Do you want to publish a course? Click here

Detection of GAN-synthesized street videos

70   0   0.0 ( 0 )
 Added by Omran Alamayreh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Research on the detection of AI-generated videos has focused almost exclusively on face videos, usually referred to as deepfakes. Manipulations like face swapping, face reenactment and expression manipulation have been the subject of an intense research with the development of a number of efficient tools to distinguish artificial videos from genuine ones. Much less attention has been paid to the detection of artificial non-facial videos. Yet, new tools for the generation of such kind of videos are being developed at a fast pace and will soon reach the quality level of deepfake videos. The goal of this paper is to investigate the detectability of a new kind of AI-generated videos framing driving street sequences (here referred to as DeepStreets videos), which, by their nature, can not be analysed with the same tools used for facial deepfakes. Specifically, we present a simple frame-based detector, achieving very good performance on state-of-the-art DeepStreets videos generated by the Vid2vid architecture. Noticeably, the detector retains very good performance on compressed videos, even when the compression level used during training does not match that used for the test videos.



rate research

Read More

Generative adversary networks (GANs) have recently led to highly realistic image synthesis results. In this work, we describe a new method to expose GAN-synthesized images using the locations of the facial landmark points. Our method is based on the observations that the facial parts configuration generated by GAN models are different from those of the real faces, due to the lack of global constraints. We perform experiments demonstrating this phenomenon, and show that an SVM classifier trained using the locations of facial landmark points is sufficient to achieve good classification performance for GAN-synthesized faces.
Most work on automated deception detection (ADD) in video has two restrictions: (i) it focuses on a video of one person, and (ii) it focuses on a single act of deception in a one or two minute video. In this paper, we propose a new ADD framework which captures long term deception in a group setting. We study deception in the well-known Resistance game (like Mafia and Werewolf) which consists of 5-8 players of whom 2-3 are spies. Spies are deceptive throughout the game (typically 30-65 minutes) to keep their identity hidden. We develop an ensemble predictive model to identify spies in Resistance videos. We show that features from low-level and high-level video analysis are insufficient, but when combined with a new class of features that we call LiarRank, produce the best results. We achieve AUCs of over 0.70 in a fully automated setting. Our demo can be found at http://home.cs.dartmouth.edu/~mbolonkin/scan/demo/
In this paper, we test the hypothesis that interesting events in unstructured videos are inherently audiovisual. We combine deep image representations for object recognition and scene understanding with representations from an audiovisual affect recognition model. To this set, we include content agnostic audio-visual synchrony representations and mel-frequency cepstral coefficients to capture other intrinsic properties of audio. These features are used in a modular supervised model. We present results from two experiments: efficacy study of single features on the task, and an ablation study where we leave one feature out at a time. For the video summarization task, our results indicate that the visual features carry most information, and including audiovisual features improves over visual-only information. To better study the task of highlight detection, we run a pilot experiment with highlights annotations for a small subset of video clips and fine-tune our best model on it. Results indicate that we can transfer knowledge from the video summarization task to a model trained specifically for the task of highlight detection.
We consider the task of generating diverse and novel videos from a single video sample. Recently, new hierarchical patch-GAN based approaches were proposed for generating diverse images, given only a single sample at training time. Moving to videos, these approaches fail to generate diverse samples, and often collapse into generating samples similar to the training video. We introduce a novel patch-based variational autoencoder (VAE) which allows for a much greater diversity in generation. Using this tool, a new hierarchical video generation scheme is constructed: at coarse scales, our patch-VAE is employed, ensuring samples are of high diversity. Subsequently, at finer scales, a patch-GAN renders the fine details, resulting in high quality videos. Our experiments show that the proposed method produces diverse samples in both the image domain, and the more challenging video domain.
Inexpensive sensing and computation, as well as insurance innovations, have made smart dashboard cameras ubiquitous. Increasingly, simple model-driven computer vision algorithms focused on lane departures or safe following distances are finding their way into these devices. Unfortunately, the long-tailed distribution of road hazards means that these hand-crafted pipelines are inadequate for driver safety systems. We propose to apply data-driven anomaly detection ideas from deep learning to dashcam videos, which hold the promise of bridging this gap. Unfortunately, there exists almost no literature applying anomaly understanding to moving cameras, and correspondingly there is also a lack of relevant datasets. To counter this issue, we present a large and diverse dataset of truck dashcam videos, namely RetroTrucks, that includes normal and anomalous driving scenes. We apply: (i) one-class classification loss and (ii) reconstruction-based loss, for anomaly detection on RetroTrucks as well as on existing static-camera datasets. We introduce formulations for modeling object interactions in this context as priors. Our experiments indicate that our dataset is indeed more challenging than standard anomaly detection datasets, and previous anomaly detection methods do not perform well here out-of-the-box. In addition, we share insights into the behavior of these two important families of anomaly detection approaches on dashcam data.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا