Do you want to publish a course? Click here

Automatic Long-Term Deception Detection in Group Interaction Videos

64   0   0.0 ( 0 )
 Added by Chongyang Bai
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Most work on automated deception detection (ADD) in video has two restrictions: (i) it focuses on a video of one person, and (ii) it focuses on a single act of deception in a one or two minute video. In this paper, we propose a new ADD framework which captures long term deception in a group setting. We study deception in the well-known Resistance game (like Mafia and Werewolf) which consists of 5-8 players of whom 2-3 are spies. Spies are deceptive throughout the game (typically 30-65 minutes) to keep their identity hidden. We develop an ensemble predictive model to identify spies in Resistance videos. We show that features from low-level and high-level video analysis are insufficient, but when combined with a new class of features that we call LiarRank, produce the best results. We achieve AUCs of over 0.70 in a fully automated setting. Our demo can be found at http://home.cs.dartmouth.edu/~mbolonkin/scan/demo/



rate research

Read More

84 - Mingyu Ding , An Zhao , Zhiwu Lu 2018
Automated deception detection (ADD) from real-life videos is a challenging task. It specifically needs to address two problems: (1) Both face and body contain useful cues regarding whether a subject is deceptive. How to effectively fuse the two is thus key to the effectiveness of an ADD model. (2) Real-life deceptive samples are hard to collect; learning with limited training data thus challenges most deep learning based ADD models. In this work, both problems are addressed. Specifically, for face-body multimodal learning, a novel face-focused cross-stream network (FFCSN) is proposed. It differs significantly from the popular two-stream networks in that: (a) face detection is added into the spatial stream to capture the facial expressions explicitly, and (b) correlation learning is performed across the spatial and temporal streams for joint deep feature learning across both face and body. To address the training data scarcity problem, our FFCSN model is trained with both meta learning and adversarial learning. Extensive experiments show that our FFCSN model achieves state-of-the-art results. Further, the proposed FFCSN model as well as its robust training strategy are shown to be generally applicable to other human-centric video analysis tasks such as emotion recognition from user-generated videos.
Facts are important in decision making in every situation, which is why it is important to catch deceptive information before they are accepted as facts. Deception detection in videos has gained traction in recent times for its various real-life application. In our approach, we extract facial action units using the facial action coding system which we use as parameters for training a deep learning model. We specifically use long short-term memory (LSTM) which we trained using the real-life trial dataset and it provided one of the best facial only approaches to deception detection. We also tested cross-dataset validation using the Real-life trial dataset, the Silesian Deception Dataset, and the Bag-of-lies Deception Dataset which has not yet been attempted by anyone else for a deception detection system. We tested and compared all datasets amongst each other individually and collectively using the same deep learning training model. The results show that adding different datasets for training worsen the accuracy of the model. One of the primary reasons is that the nature of these datasets vastly differs from one another.
Detecting groups of people who are jointly deceptive in video conversations is crucial in settings such as meetings, sales pitches, and negotiations. Past work on deception in videos focuses on detecting a single deceiver and uses facial or visual features only. In this paper, we propose the concept of Face-to-Face Dynamic Interaction Networks (FFDINs) to model the interpersonal interactions within a group of people. The use of FFDINs enables us to leverage network relations in detecting group deception in video conversations for the first time. We use a dataset of 185 videos from a deception-based game called Resistance. We first characterize the behavior of individual, pairs, and groups of deceptive participants and compare them to non-deceptive participants. Our analysis reveals that pairs of deceivers tend to avoid mutual interaction and focus their attention on non-deceivers. In contrast, non-deceivers interact with everyone equally. We propose Negative Dynamic Interaction Networks to capture the notion of missing interactions. We create the DeceptionRank algorithm to detect deceivers from NDINs extracted from videos that are just one minute long. We show that our method outperforms recent state-of-the-art computer vision, graph embedding, and ensemble methods by at least 20.9% AUROC in identifying deception from videos.
Individual pig detection and tracking is an important requirement in many video-based pig monitoring applications. However, it still remains a challenging task in complex scenes, due to problems of light fluctuation, similar appearances of pigs, shape deformations and occlusions. To tackle these problems, we propose a robust real time multiple pig detection and tracking method which does not require manual marking or physical identification of the pigs, and works under both daylight and infrared light conditions. Our method couples a CNN-based detector and a correlation filter-based tracker via a novel hierarchical data association algorithm. The detector gains the best accuracy/speed trade-off by using the features derived from multiple layers at different scales in a one-stage prediction network. We define a tag-box for each pig as the tracking target, and the multiple object tracking is conducted in a key-points tracking manner using learned correlation filters. Under challenging conditions, the tracking failures are modelled based on the relations between responses of detector and tracker, and the data association algorithm allows the detection hypotheses to be refined, meanwhile the drifted tracks can be corrected by probing the tracking failures followed by the re-initialization of tracking. As a result, the optimal tracklets can sequentially grow with on-line refined detections, and tracking fragments are correctly integrated into respective tracks while keeping the original identifications. Experiments with a dataset captured from a commercial farm show that our method can robustly detect and track multiple pigs under challenging conditions. The promising performance of the proposed method also demonstrates a feasibility of long-term individual pig tracking in a complex environment and thus promises a commercial potential.
Current surveillance and control systems still require human supervision and intervention. This work presents a novel automatic handgun detection system in videos appropriate for both, surveillance and control purposes. We reformulate this detection problem into the problem of minimizing false positives and solve it by building the key training data-set guided by the results of a deep Convolutional Neural Networks (CNN) classifier, then assessing the best classification model under two approaches, the sliding window approach and region proposal approach. The most promising results are obtained by Faster R-CNN based model trained on our new database. The best detector show a high potential even in low quality youtube videos and provides satisfactory results as automatic alarm system. Among 30 scenes, it successfully activates the alarm after five successive true positives in less than 0.2 seconds, in 27 scenes. We also define a new metric, Alarm Activation per Interval (AApI), to assess the performance of a detection model as an automatic detection system in videos.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا