Do you want to publish a course? Click here

Towards Anomaly Detection in Dashcam Videos

197   0   0.0 ( 0 )
 Added by Quoc-Huy Tran
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Inexpensive sensing and computation, as well as insurance innovations, have made smart dashboard cameras ubiquitous. Increasingly, simple model-driven computer vision algorithms focused on lane departures or safe following distances are finding their way into these devices. Unfortunately, the long-tailed distribution of road hazards means that these hand-crafted pipelines are inadequate for driver safety systems. We propose to apply data-driven anomaly detection ideas from deep learning to dashcam videos, which hold the promise of bridging this gap. Unfortunately, there exists almost no literature applying anomaly understanding to moving cameras, and correspondingly there is also a lack of relevant datasets. To counter this issue, we present a large and diverse dataset of truck dashcam videos, namely RetroTrucks, that includes normal and anomalous driving scenes. We apply: (i) one-class classification loss and (ii) reconstruction-based loss, for anomaly detection on RetroTrucks as well as on existing static-camera datasets. We introduce formulations for modeling object interactions in this context as priors. Our experiments indicate that our dataset is indeed more challenging than standard anomaly detection datasets, and previous anomaly detection methods do not perform well here out-of-the-box. In addition, we share insights into the behavior of these two important families of anomaly detection approaches on dashcam data.



rate research

Read More

144 - Yu Yao , Xizi Wang , Mingze Xu 2020
Video anomaly detection (VAD) has been extensively studied. However, research on egocentric traffic videos with dynamic scenes lacks large-scale benchmark datasets as well as effective evaluation metrics. This paper proposes traffic anomaly detection with a textit{when-where-what} pipeline to detect, localize, and recognize anomalous events from egocentric videos. We introduce a new dataset called Detection of Traffic Anomaly (DoTA) containing 4,677 videos with temporal, spatial, and categorical annotations. A new spatial-temporal area under curve (STAUC) evaluation metric is proposed and used with DoTA. State-of-the-art methods are benchmarked for two VAD-related tasks.Experimental results show STAUC is an effective VAD metric. To our knowledge, DoTA is the largest traffic anomaly dataset to-date and is the first supporting traffic anomaly studies across when-where-what perspectives. Our code and dataset can be found in: https://github.com/MoonBlvd/Detection-of-Traffic-Anomaly
In this paper, we test the hypothesis that interesting events in unstructured videos are inherently audiovisual. We combine deep image representations for object recognition and scene understanding with representations from an audiovisual affect recognition model. To this set, we include content agnostic audio-visual synchrony representations and mel-frequency cepstral coefficients to capture other intrinsic properties of audio. These features are used in a modular supervised model. We present results from two experiments: efficacy study of single features on the task, and an ablation study where we leave one feature out at a time. For the video summarization task, our results indicate that the visual features carry most information, and including audiovisual features improves over visual-only information. To better study the task of highlight detection, we run a pilot experiment with highlights annotations for a small subset of video clips and fine-tune our best model on it. Results indicate that we can transfer knowledge from the video summarization task to a model trained specifically for the task of highlight detection.
Videos represent the primary source of information for surveillance applications and are available in large amounts but in most cases contain little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.
91 - Rui Yu , Zihan Zhou 2021
Human trajectory prediction has received increased attention lately due to its importance in applications such as autonomous vehicles and indoor robots. However, most existing methods make predictions based on human-labeled trajectories and ignore the errors and noises in detection and tracking. In this paper, we study the problem of human trajectory forecasting in raw videos, and show that the prediction accuracy can be severely affected by various types of tracking errors. Accordingly, we propose a simple yet effective strategy to correct the tracking failures by enforcing prediction consistency over time. The proposed re-tracking algorithm can be applied to any existing tracking and prediction pipelines. Experiments on public benchmark datasets demonstrate that the proposed method can improve both tracking and prediction performance in challenging real-world scenarios. The code and data are available at https://git.io/retracking-prediction.
Semantic segmentation is a crucial task for robot navigation and safety. However, it requires huge amounts of pixelwise annotations to yield accurate results. While recent progress in computer vision algorithms has been heavily boosted by large ground-level datasets, the labeling time has hampered progress in low altitude UAV applications, mostly due to the difficulty imposed by large object scales and pose variations. Motivated by the lack of a large video aerial dataset, we introduce a new one, with high resolution (4K) images and manually-annotated dense labels every 50 frames. To help the video labeling process, we make an important step towards automatic annotation and propose SegProp, an iterative flow-based method with geometric constrains to propagate the semantic labels to frames that lack human annotations. This results in a dataset with more than 50k annotated frames - the largest of its kind, to the best of our knowledge. Our experiments show that SegProp surpasses current state-of-the-art label propagation methods by a significant margin. Furthermore, when training a semantic segmentation deep neural net using the automatically annotated frames, we obtain a compelling overall performance boost at test time of 16.8% mean F-measure over a baseline trained only with manually-labeled frames. Our Ruralscapes dataset, the label propagation code and a fast segmentation tool are available at our website: https://sites.google.com/site/aerialimageunderstanding/
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا