Do you want to publish a course? Click here

Face-NMS: A Core-set Selection Approach for Efficient Face Recognition

102   0   0.0 ( 0 )
 Added by Junjie Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, face recognition in the wild has achieved remarkable success and one key engine is the increasing size of training data. For example, the largest face dataset, WebFace42M contains about 2 million identities and 42 million faces. However, a massive number of faces raise the constraints in training time, computing resources, and memory cost. The current research on this problem mainly focuses on designing an efficient Fully-connected layer (FC) to reduce GPU memory consumption caused by a large number of identities. In this work, we relax these constraints by resolving the redundancy problem of the up-to-date face datasets caused by the greedily collecting operation (i.e. the core-set selection perspective). As the first attempt in this perspective on the face recognition problem, we find that existing methods are limited in both performance and efficiency. For superior cost-efficiency, we contribute a novel filtering strategy dubbed Face-NMS. Face-NMS works on feature space and simultaneously considers the local and global sparsity in generating core sets. In practice, Face-NMS is analogous to Non-Maximum Suppression (NMS) in the object detection community. It ranks the faces by their potential contribution to the overall sparsity and filters out the superfluous face in the pairs with high similarity for local sparsity. With respect to the efficiency aspect, Face-NMS accelerates the whole pipeline by applying a smaller but sufficient proxy dataset in training the proxy model. As a result, with Face-NMS, we successfully scale down the WebFace42M dataset to 60% while retaining its performance on the main benchmarks, offering a 40% resource-saving and 1.64 times acceleration. The code is publicly available for reference at https://github.com/HuangJunJie2017/Face-NMS.



rate research

Read More

Face recognition has achieved significant progress in deep-learning era due to the ultra-large-scale and well-labeled datasets. However, training on ultra-large-scale datasets is time-consuming and takes up a lot of hardware resource. Therefore, designing an efficient training approach is crucial and indispensable. The heavy computational and memory costs mainly result from the high dimensionality of the Fully-Connected (FC) layer. Specifically, the dimensionality is determined by the number of face identities, which can be million-level or even more. To this end, we propose a novel training approach for ultra-large-scale face datasets, termed Faster Face Classification (F$^2$C). In F$^2$C, we first define a Gallery Net and a Probe Net that are used to generate identities centers and extract faces features for face recognition, respectively. Gallery Net has the same structure as Probe Net and inherits the parameters from Probe Net with a moving average paradigm. After that, to reduce the training time and hardware costs of the FC layer, we propose a Dynamic Class Pool (DCP) that stores the features from Gallery Net and calculates the inner product (logits) with positive samples (whose identities are in the DCP) in each mini-batch. DCP can be regarded as a substitute for the FC layer but it is far smaller, thus greatly reducing the computational and memory costs. For negative samples (whose identities are not in DCP), we minimize the cosine similarities between negative samples and those in DCP. Then, to improve the update efficiency of DCPs parameters, we design a dual data-loader including identity-based and instance-based loaders to generate a certain of identities and samples in mini-batches.
In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, MixFaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (< 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation overhead, which proves the practical value of our proposed MixFaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.
Face recognition has been one of the most relevant and explored fields of Biometrics. In real-world applications, face recognition methods usually must deal with scenarios where not all probe individuals were seen during the training phase (open-set scenarios). Therefore, open-set face recognition is a subject of increasing interest as it deals with identifying individuals in a space where not all faces are known in advance. This is useful in several applications, such as access authentication, on which only a few individuals that have been previously enrolled in a gallery are allowed. The present work introduces a novel approach towards open-set face recognition focusing on small galleries and in enrollment detection, not identity retrieval. A Siamese Network architecture is proposed to learn a model to detect if a face probe is enrolled in the gallery based on a verification-like approach. Promising results were achieved for small galleries on experiments carried out on Pubfig83, FRGCv1 and LFW datasets. State-of-the-art methods like HFCN and HPLS were outperformed on FRGCv1. Besides, a new evaluation protocol is introduced for experiments in small galleries on LFW.
Applications such as face recognition that deal with high-dimensional data need a mapping technique that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex features. Most of traditional Linear Discriminant Analysis suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the small sample size problem which is often encountered in FR tasks. In this short paper, we combine nonlinear kernel based mapping of data called KDDA with Support Vector machine classifier to deal with both of the shortcomings in an efficient and cost effective manner. The proposed here method is compared, in terms of classification accuracy, to other commonly used FR methods on UMIST face database. Results indicate that the performance of the proposed method is overall superior to those of traditional FR approaches, such as the Eigenfaces, Fisherfaces, and D-LDA methods and traditional linear classifiers.
340 - Chaoyou Fu , Xiang Wu , Yibo Hu 2020
Heterogeneous Face Recognition (HFR) refers to matching cross-domain faces and plays a crucial role in public security. Nevertheless, HFR is confronted with challenges from large domain discrepancy and insufficient heterogeneous data. In this paper, we formulate HFR as a dual generation problem, and tackle it via a novel Dual Variational Generation (DVG-Face) framework. Specifically, a dual variational generator is elaborately designed to learn the joint distribution of paired heterogeneous images. However, the small-scale paired heterogeneous training data may limit the identity diversity of sampling. In order to break through the limitation, we propose to integrate abundant identity information of large-scale visible data into the joint distribution. Furthermore, a pairwise identity preserving loss is imposed on the generated paired heterogeneous images to ensure their identity consistency. As a consequence, massive new diverse paired heterogeneous images with the same identity can be generated from noises. The identity consistency and identity diversity properties allow us to employ these generated images to train the HFR network via a contrastive learning mechanism, yielding both domain-invariant and discriminative embedding features. Concretely, the generated paired heterogeneous images are regarded as positive pairs, and the images obtained from different samplings are considered as negative pairs. Our method achieves superior performances over state-of-the-art methods on seven challenging databases belonging to five HFR tasks, including NIR-VIS, Sketch-Photo, Profile-Frontal Photo, Thermal-VIS, and ID-Camera. The related code will be released at https://github.com/BradyFU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا