No Arabic abstract
Applications such as face recognition that deal with high-dimensional data need a mapping technique that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex features. Most of traditional Linear Discriminant Analysis suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the small sample size problem which is often encountered in FR tasks. In this short paper, we combine nonlinear kernel based mapping of data called KDDA with Support Vector machine classifier to deal with both of the shortcomings in an efficient and cost effective manner. The proposed here method is compared, in terms of classification accuracy, to other commonly used FR methods on UMIST face database. Results indicate that the performance of the proposed method is overall superior to those of traditional FR approaches, such as the Eigenfaces, Fisherfaces, and D-LDA methods and traditional linear classifiers.
Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector Machine as weak component classifiers to be used in Face Detection Task. To obtain a set of effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM on imbalanced classification problem. The proposed here method is compared, in terms of classification accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior to previous Adaboost approaches.
This paper studies face recognition (FR) and normalization in surveillance imagery. Surveillance FR is a challenging problem that has great values in law enforcement. Despite recent progress in conventional FR, less effort has been devoted to surveillance FR. To bridge this gap, we propose a Feature Adaptation Network (FAN) to jointly perform surveillance FR and normalization. Our face normalization mainly acts on the aspect of image resolution, closely related to face super-resolution. However, previous face super-resolution methods require paired training data with pixel-to-pixel correspondence, which is typically unavailable between real-world low-resolution and high-resolution faces. FAN can leverage both paired and unpaired data as we disentangle the features into identity and non-identity components and adapt the distribution of the identity features, which breaks the limit of current face super-resolution methods. We further propose a random scale augmentation scheme to learn resolution robust identity features, with advantages over previous fixed scale augmentation. Extensive experiments on LFW, WIDER FACE, QUML-SurvFace and SCface datasets have shown the effectiveness of our method on surveillance FR and normalization.
Recently, face recognition in the wild has achieved remarkable success and one key engine is the increasing size of training data. For example, the largest face dataset, WebFace42M contains about 2 million identities and 42 million faces. However, a massive number of faces raise the constraints in training time, computing resources, and memory cost. The current research on this problem mainly focuses on designing an efficient Fully-connected layer (FC) to reduce GPU memory consumption caused by a large number of identities. In this work, we relax these constraints by resolving the redundancy problem of the up-to-date face datasets caused by the greedily collecting operation (i.e. the core-set selection perspective). As the first attempt in this perspective on the face recognition problem, we find that existing methods are limited in both performance and efficiency. For superior cost-efficiency, we contribute a novel filtering strategy dubbed Face-NMS. Face-NMS works on feature space and simultaneously considers the local and global sparsity in generating core sets. In practice, Face-NMS is analogous to Non-Maximum Suppression (NMS) in the object detection community. It ranks the faces by their potential contribution to the overall sparsity and filters out the superfluous face in the pairs with high similarity for local sparsity. With respect to the efficiency aspect, Face-NMS accelerates the whole pipeline by applying a smaller but sufficient proxy dataset in training the proxy model. As a result, with Face-NMS, we successfully scale down the WebFace42M dataset to 60% while retaining its performance on the main benchmarks, offering a 40% resource-saving and 1.64 times acceleration. The code is publicly available for reference at https://github.com/HuangJunJie2017/Face-NMS.
With the rapid development of social media sharing, people often need to manage the growing volume of multimedia data such as large scale video classification and annotation, especially to organize those videos containing human activities. Recently, manifold regularized semi-supervised learning (SSL), which explores the intrinsic data probability distribution and then improves the generalization ability with only a small number of labeled data, has emerged as a promising paradigm for semiautomatic video classification. In addition, human action videos often have multi-modal content and different representations. To tackle the above problems, in this paper we propose multiview Hessian regularized logistic regression (mHLR) for human action recognition. Compared with existing work, the advantages of mHLR lie in three folds: (1) mHLR combines multiple Hessian regularization, each of which obtained from a particular representation of instance, to leverage the exploring of local geometry; (2) mHLR naturally handle multi-view instances with multiple representations; (3) mHLR employs a smooth loss function and then can be effectively optimized. We carefully conduct extensive experiments on the unstructured social activity attribute (USAA) dataset and the experimental results demonstrate the effectiveness of the proposed multiview Hessian regularized logistic regression for human action recognition.
With the advancement of IoT and artificial intelligence technologies, and the need for rapid application growth in fields such as security entrance control and financial business trade, facial information processing has become an important means for achieving identity authentication and information security. In this paper, we propose a multi-feature fusion algorithm based on integral histograms and a real-time update tracking particle filtering module. First, edge and colour features are extracted, weighting methods are used to weight the colour histogram and edge features to describe facial features, and fusion of colour and edge features is made adaptive by using fusion coefficients to improve face tracking reliability. Then, the integral histogram is integrated into the particle filtering algorithm to simplify the calculation steps of complex particles. Finally, the tracking window size is adjusted in real time according to the change in the average distance from the particle centre to the edge of the current model and the initial model to reduce the drift problem and achieve stable tracking with significant changes in the target dimension. The results show that the algorithm improves video tracking accuracy, simplifies particle operation complexity, improves the speed, and has good anti-interference ability and robustness.