Do you want to publish a course? Click here

An Efficient Training Approach for Very Large Scale Face Recognition

95   0   0.0 ( 0 )
 Added by Kai Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Face recognition has achieved significant progress in deep-learning era due to the ultra-large-scale and well-labeled datasets. However, training on ultra-large-scale datasets is time-consuming and takes up a lot of hardware resource. Therefore, designing an efficient training approach is crucial and indispensable. The heavy computational and memory costs mainly result from the high dimensionality of the Fully-Connected (FC) layer. Specifically, the dimensionality is determined by the number of face identities, which can be million-level or even more. To this end, we propose a novel training approach for ultra-large-scale face datasets, termed Faster Face Classification (F$^2$C). In F$^2$C, we first define a Gallery Net and a Probe Net that are used to generate identities centers and extract faces features for face recognition, respectively. Gallery Net has the same structure as Probe Net and inherits the parameters from Probe Net with a moving average paradigm. After that, to reduce the training time and hardware costs of the FC layer, we propose a Dynamic Class Pool (DCP) that stores the features from Gallery Net and calculates the inner product (logits) with positive samples (whose identities are in the DCP) in each mini-batch. DCP can be regarded as a substitute for the FC layer but it is far smaller, thus greatly reducing the computational and memory costs. For negative samples (whose identities are not in DCP), we minimize the cosine similarities between negative samples and those in DCP. Then, to improve the update efficiency of DCPs parameters, we design a dual data-loader including identity-based and instance-based loaders to generate a certain of identities and samples in mini-batches.



rate research

Read More

Recently, face recognition in the wild has achieved remarkable success and one key engine is the increasing size of training data. For example, the largest face dataset, WebFace42M contains about 2 million identities and 42 million faces. However, a massive number of faces raise the constraints in training time, computing resources, and memory cost. The current research on this problem mainly focuses on designing an efficient Fully-connected layer (FC) to reduce GPU memory consumption caused by a large number of identities. In this work, we relax these constraints by resolving the redundancy problem of the up-to-date face datasets caused by the greedily collecting operation (i.e. the core-set selection perspective). As the first attempt in this perspective on the face recognition problem, we find that existing methods are limited in both performance and efficiency. For superior cost-efficiency, we contribute a novel filtering strategy dubbed Face-NMS. Face-NMS works on feature space and simultaneously considers the local and global sparsity in generating core sets. In practice, Face-NMS is analogous to Non-Maximum Suppression (NMS) in the object detection community. It ranks the faces by their potential contribution to the overall sparsity and filters out the superfluous face in the pairs with high similarity for local sparsity. With respect to the efficiency aspect, Face-NMS accelerates the whole pipeline by applying a smaller but sufficient proxy dataset in training the proxy model. As a result, with Face-NMS, we successfully scale down the WebFace42M dataset to 60% while retaining its performance on the main benchmarks, offering a 40% resource-saving and 1.64 times acceleration. The code is publicly available for reference at https://github.com/HuangJunJie2017/Face-NMS.
In this work, we address the problem of large-scale online face clustering: given a continuous stream of unknown faces, create a database grouping the incoming faces by their identity. The database must be updated every time a new face arrives. In addition, the solution must be efficient, accurate and scalable. For this purpose, we present an online gaussian mixture-based clustering method (OGMC). The key idea of this method is the proposal that an identity can be represented by more than just one distribution or cluster. Using feature vectors (f-vectors) extracted from the incoming faces, OGMC generates clusters that may be connected to others depending on their proximity and their robustness. Every time a cluster is updated with a new sample, its connections are also updated. With this approach, we reduce the dependency of the clustering process on the order and the size of the incoming data and we are able to deal with complex data distributions. Experimental results show that the proposed approach outperforms state-of-the-art clustering methods on large-scale face clustering benchmarks not only in accuracy, but also in efficiency and scalability.
99 - Bi Li , Teng Xi , Gang Zhang 2021
Learning discriminative representation using large-scale face datasets in the wild is crucial for real-world applications, yet it remains challenging. The difficulties lie in many aspects and this work focus on computing resource constraint and long-tailed class distribution. Recently, classification-based representation learning with deep neural networks and well-designed losses have demonstrated good recognition performance. However, the computing and memory cost linearly scales up to the number of identities (classes) in the training set, and the learning process suffers from unbalanced classes. In this work, we propose a dynamic class queue (DCQ) to tackle these two problems. Specifically, for each iteration during training, a subset of classes for recognition are dynamically selected and their class weights are dynamically generated on-the-fly which are stored in a queue. Since only a subset of classes is selected for each iteration, the computing requirement is reduced. By using a single server without model parallel, we empirically verify in large-scale datasets that 10% of classes are sufficient to achieve similar performance as using all classes. Moreover, the class weights are dynamically generated in a few-shot manner and therefore suitable for tail classes with only a few instances. We show clear improvement over a strong baseline in the largest public dataset Megaface Challenge2 (MF2) which has 672K identities and over 88% of them have less than 10 instances. Code is available at https://github.com/bilylee/DCQ
To improve the discriminative and generalization ability of lightweight network for face recognition, we propose an efficient variable group convolutional network called VarGFaceNet. Variable group convolution is introduced by VarGNet to solve the conflict between small computational cost and the unbalance of computational intensity inside a block. We employ variable group convolution to design our network which can support large scale face identification while reduce computational cost and parameters. Specifically, we use a head setting to reserve essential information at the start of the network and propose a particular embedding setting to reduce parameters of fully-connected layer for embedding. To enhance interpretation ability, we employ an equivalence of angular distillation loss to guide our lightweight network and we apply recursive knowledge distillation to relieve the discrepancy between the teacher model and the student model. The champion of deepglint-light track of LFR (2019) challenge demonstrates the effectiveness of our model and approach. Implementation of VarGFaceNet will be released at https://github.com/zma-c-137/VarGFaceNet soon.
In this paper, we present a set of extremely efficient and high throughput models for accurate face verification, MixFaceNets which are inspired by Mixed Depthwise Convolutional Kernels. Extensive experiment evaluations on Label Face in the Wild (LFW), Age-DB, MegaFace, and IARPA Janus Benchmarks IJB-B and IJB-C datasets have shown the effectiveness of our MixFaceNets for applications requiring extremely low computational complexity. Under the same level of computation complexity (< 500M FLOPs), our MixFaceNets outperform MobileFaceNets on all the evaluated datasets, achieving 99.60% accuracy on LFW, 97.05% accuracy on AgeDB-30, 93.60 TAR (at FAR1e-6) on MegaFace, 90.94 TAR (at FAR1e-4) on IJB-B and 93.08 TAR (at FAR1e-4) on IJB-C. With computational complexity between 500M and 1G FLOPs, our MixFaceNets achieved results comparable to the top-ranked models, while using significantly fewer FLOPs and less computation overhead, which proves the practical value of our proposed MixFaceNets. All training codes, pre-trained models, and training logs have been made available https://github.com/fdbtrs/mixfacenets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا