Do you want to publish a course? Click here

DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition

341   0   0.0 ( 0 )
 Added by Chaoyou Fu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Heterogeneous Face Recognition (HFR) refers to matching cross-domain faces and plays a crucial role in public security. Nevertheless, HFR is confronted with challenges from large domain discrepancy and insufficient heterogeneous data. In this paper, we formulate HFR as a dual generation problem, and tackle it via a novel Dual Variational Generation (DVG-Face) framework. Specifically, a dual variational generator is elaborately designed to learn the joint distribution of paired heterogeneous images. However, the small-scale paired heterogeneous training data may limit the identity diversity of sampling. In order to break through the limitation, we propose to integrate abundant identity information of large-scale visible data into the joint distribution. Furthermore, a pairwise identity preserving loss is imposed on the generated paired heterogeneous images to ensure their identity consistency. As a consequence, massive new diverse paired heterogeneous images with the same identity can be generated from noises. The identity consistency and identity diversity properties allow us to employ these generated images to train the HFR network via a contrastive learning mechanism, yielding both domain-invariant and discriminative embedding features. Concretely, the generated paired heterogeneous images are regarded as positive pairs, and the images obtained from different samplings are considered as negative pairs. Our method achieves superior performances over state-of-the-art methods on seven challenging databases belonging to five HFR tasks, including NIR-VIS, Sketch-Photo, Profile-Frontal Photo, Thermal-VIS, and ID-Camera. The related code will be released at https://github.com/BradyFU.



rate research

Read More

Face images captured in heterogeneous environments, e.g., sketches generated by the artists or composite-generation software, photos taken by common cameras and infrared images captured by corresponding infrared imaging devices, usually subject to large texture (i.e., style) differences. This results in heavily degraded performance of conventional face recognition methods in comparison with the performance on images captured in homogeneous environments. In this paper, we propose a novel sparse graphical representation based discriminant analysis (SGR-DA) approach to address aforementioned face recognition in heterogeneous scenarios. An adaptive sparse graphical representation scheme is designed to represent heterogeneous face images, where a Markov networks model is constructed to generate adaptive sparse vectors. To handle the complex facial structure and further improve the discriminability, a spatial partition-based discriminant analysis framework is presented to refine the adaptive sparse vectors for face matching. We conducted experiments on six commonly used heterogeneous face datasets and experimental results illustrate that our proposed SGR-DA approach achieves superior performance in comparison with state-of-the-art methods.
Face occlusions, covering either the majority or discriminative parts of the face, can break facial perception and produce a drastic loss of information. Biometric systems such as recent deep face recognition models are not immune to obstructions or other objects covering parts of the face. While most of the current face recognition methods are not optimized to handle occlusions, there have been a few attempts to improve robustness directly in the training stage. Unlike those, we propose to study the effect of generative face completion on the recognition. We offer a face completion encoder-decoder, based on a convolutional operator with a gating mechanism, trained with an ample set of face occlusions. To systematically evaluate the impact of realistic occlusions on recognition, we propose to play the occlusion game: we render 3D objects onto different face parts, providing precious knowledge of what the impact is of effectively removing those occlusions. Extensive experiments on the Labeled Faces in the Wild (LFW), and its more difficult variant LFW-BLUFR, testify that face completion is able to partially restore face perception in machine vision systems for improved recognition.
Face authentication is now widely used, especially on mobile devices, rather than authentication using a personal identification number or an unlock pattern, due to its convenience. It has thus become a tempting target for attackers using a presentation attack. Traditional presentation attacks use facial images or videos of the victim. Previous work has proven the existence of master faces, i.e., faces that match multiple enrolled templates in face recognition systems, and their existence extends the ability of presentation attacks. In this paper, we perform an extensive study on latent variable evolution (LVE), a method commonly used to generate master faces. We run an LVE algorithm for various scenarios and with more than one database and/or face recognition system to study the properties of the master faces and to understand in which conditions strong master faces could be generated. Moreover, through analysis, we hypothesize that master faces come from some dense areas in the embedding spaces of the face recognition systems. Last but not least, simulated presentation attacks using generated master faces generally preserve the false-matching ability of their original digital forms, thus demonstrating that the existence of master faces poses an actual threat.
Recently, face recognition in the wild has achieved remarkable success and one key engine is the increasing size of training data. For example, the largest face dataset, WebFace42M contains about 2 million identities and 42 million faces. However, a massive number of faces raise the constraints in training time, computing resources, and memory cost. The current research on this problem mainly focuses on designing an efficient Fully-connected layer (FC) to reduce GPU memory consumption caused by a large number of identities. In this work, we relax these constraints by resolving the redundancy problem of the up-to-date face datasets caused by the greedily collecting operation (i.e. the core-set selection perspective). As the first attempt in this perspective on the face recognition problem, we find that existing methods are limited in both performance and efficiency. For superior cost-efficiency, we contribute a novel filtering strategy dubbed Face-NMS. Face-NMS works on feature space and simultaneously considers the local and global sparsity in generating core sets. In practice, Face-NMS is analogous to Non-Maximum Suppression (NMS) in the object detection community. It ranks the faces by their potential contribution to the overall sparsity and filters out the superfluous face in the pairs with high similarity for local sparsity. With respect to the efficiency aspect, Face-NMS accelerates the whole pipeline by applying a smaller but sufficient proxy dataset in training the proxy model. As a result, with Face-NMS, we successfully scale down the WebFace42M dataset to 60% while retaining its performance on the main benchmarks, offering a 40% resource-saving and 1.64 times acceleration. The code is publicly available for reference at https://github.com/HuangJunJie2017/Face-NMS.
Deep CNNs have been pushing the frontier of visual recognition over past years. Besides recognition accuracy, strong demands in understanding deep CNNs in the research community motivate developments of tools to dissect pre-trained models to visualize how they make predictions. Recent works further push the interpretability in the network learning stage to learn more meaningful representations. In this work, focusing on a specific area of visual recognition, we report our efforts towards interpretable face recognition. We propose a spatial activation diversity loss to learn more structured face representations. By leveraging the structure, we further design a feature activation diversity loss to push the interpretable representations to be discriminative and robust to occlusions. We demonstrate on three face recognition benchmarks that our proposed method is able to improve face recognition accuracy with easily interpretable face representations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا