Do you want to publish a course? Click here

Self-sealing complex oxide resonators

146   0   0.0 ( 0 )
 Added by Martin Lee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Although 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface that is only weakly bound by van der Waals interactions, necessitating additional sealing procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity of pressure sensors to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nano-mechanical resonators made from SrRuO3 and SrTiO3 membranes suspended over SiO2/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices for 15 minutes. Similar devices fabricated on Si3N4/Si do not show such improvements, suggesting that the adhesion increase over SiO2 is mediated by oxygen bonds that are formed at the SiO2/complex oxide interface during the self-sealing anneal. We confirm the enhancement of adhesion by picosecond ultrasonics measurements which show an increase in the interfacial stiffness by 70% after annealing. Since it is straigthforward to apply, the presented self-sealing method is thus a promising route toward realizing ultrathin hermetic pressure sensors.



rate research

Read More

Complex oxide thin films and heterostructures exhibit a profusion of exotic phenomena, often resulting from the intricate interplay between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the study of their properties in the absence of interface effects. In this work, we create ultrathin membranes of strongly correlated materials and demonstrate top-down fabrication of nanomechanical resonators made out of ce{SrTiO3} and ce{SrRuO3}. Using laser interferometry, we successfully actuate and measure the motion of the nanodrum resonators. By measuring their temperature-dependent mechanical response, we observe signatures of structural phase transitions in ce{SrTiO3}, which affect the strain and mechanical dissipation in the resonators. This approach can be extended to investigate phase transitions in a wide range of materials. Our study demonstrates the feasibility of integrating ultrathin complex oxide membranes for realizing nanoelectromechanical systems on arbitrary substrates.
Renewable energy conversion and storage, and greenhouse gas emission-free technologies are within the primary tasks and challenges for the society. Hydrogen fuel, produced by alkaline water electrolysis is fulfilling all these demands, however the technology is economically feeble, limited by the slow rate of oxygen evolution reaction. Complex metal oxides were suggested to overcome this problem being low-cost efficient catalysts. However, the insufficient long-term stability, degradation of structure and electrocatalytic activity are restricting their utilization. Here we report on a new perovskite-based self-assembling material BaCo0.98Ti0.02O3-$delta$:Co3O4 with superior performance, showing outstanding properties compared to current state-of-the-art materials without degeneration of its properties even at 353 K. By chemical and structural analysis the degradation mechanism was identified and modified by selective doping. Short-range order and chemical composition rather than long-range order are factors determining the outstanding performance. The derived general design rules can be used for further development of oxide-based electrocatalytic materials.
High finesse optical cavities of current interferometric gravitational-wave detectors are significantly limited in sensitivity by laser quantum noise and coating thermal noise. The thermal noise is associated with internal energy dissipation in the materials that compose the test masses of the interferometer. Our understanding of how the internal friction is linked to the amorphous material structure is limited due to the complexity of the problem and the lack of studies that span over a large range of materials. We present a systematic investigation of amorphous metal oxide and Ta$_2$O$_5$-based mixed oxide coatings to evaluate their suitability for low Brownian noise experiments. It is shown that the mechanical loss of metal oxides is correlated to their amorphous morphology, with continuous random network materials such as SiO$_2$ and GeO$_2$ featuring the lowest loss angles. We evaluated different Ta$_2$O$_5$-based mixed oxide thin films and studied the influence of the dopant in the optical and elastic properties of the coating. We estimated the thermal noise associated with high-reflectance multilayer stacks that employ each of the mixed oxides as the high index material. We concluded that the current high index material of TiO$_2$-doped Ta$_2$O$_5$ is the optimal choice for reduced thermal noise among Ta$_2$O$_5$-based mixed oxide coatings with low dopant concentrations.
Graphene oxide (GO), the functionalized graphene with oxygenated groups (mainly epoxy and hydroxyl), has attracted resurgent interests in the past decade owing to its large surface area, superior physical and chemical properties, and easy composition with other materials via surface functional groups. Usually, GO is used as an important raw material for mass production of graphene via reduction. However, under different conditions, the coverage, types, and arrangements of oxygen-containing groups in GO can be varied, which give rise to excellent and controllable physical properties, such as tunable electronic and mechanical properties depending closely on oxidation degree, suppressed thermal conductivity, optical transparency and fluorescence, and nonlinear optical properties. Based on these outstanding properties, many electronic, optical, optoelectronic, and thermoelectric devices with high performance can be achieved on the basis of GO. Here we present a comprehensive review on recent progress of GO, focusing on the atomic structures, fundamental physical properties, and related device applications, including transparent and flexible conductors, field-effect transistors, electrical and optical sensors, fluorescence quenchers, optical limiters and absorbers, surface enhanced Raman scattering detectors, solar cells, light-emitting diodes, and thermal rectifiers.
While tremendous success has been achieved to date in creating both single phase and composite magnetoelectric materials, the quintessential electric-field control of magnetism remains elusive. In this work, we demonstrate a linear magnetoelectric effect which arises from a novel carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO$_3$/SrTiO$_3$ interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behavior, the interface displays a spatial coexistence of magnetism and dielectric polarization suggesting a route to a new type of interfacial multiferroic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا