Do you want to publish a course? Click here

Ultrathin complex oxide nanomechanical resonators

78   0   0.0 ( 0 )
 Added by Dejan Davidovikj
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Complex oxide thin films and heterostructures exhibit a profusion of exotic phenomena, often resulting from the intricate interplay between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the study of their properties in the absence of interface effects. In this work, we create ultrathin membranes of strongly correlated materials and demonstrate top-down fabrication of nanomechanical resonators made out of ce{SrTiO3} and ce{SrRuO3}. Using laser interferometry, we successfully actuate and measure the motion of the nanodrum resonators. By measuring their temperature-dependent mechanical response, we observe signatures of structural phase transitions in ce{SrTiO3}, which affect the strain and mechanical dissipation in the resonators. This approach can be extended to investigate phase transitions in a wide range of materials. Our study demonstrates the feasibility of integrating ultrathin complex oxide membranes for realizing nanoelectromechanical systems on arbitrary substrates.



rate research

Read More

Beta gallium oxide (beta-Ga2O3) is an emerging ultrawide band gap (4.5 - 4.9 eV) semiconductor with attractive properties for future power electronics, optoelectronics, and sensors for detecting gases and ultraviolet radiation. beta-Ga2O3 thin films made by various methods are being actively studied toward such devices. Here, we report on the experimental demonstration of single-crystal beta-Ga2O3 nanomechanical resonators using beta-Ga2O3 nanoflakes grown via low-pressure chemical vapor deposition (LPCVD). By investigating beta-Ga2O3 circular drumhead structures, we demonstrate multimode nanoresonators up to the 6th mode in high and very high frequency (HF / VHF) bands, and also realize spatial mapping and visualization of the multimode motion. These measurements reveal a Youngs modulus of E_Y = 261 GPa and anisotropic biaxial built-in tension of 37.5 MPa and 107.5 MPa. We find that thermal annealing can considerably improve the resonance characteristics, including ~40% upshift in frequency and ~90% enhancement in quality (Q) factor. This study lays a foundation for future exploration and development of mechanically coupled and tunable beta-Ga2O3 electronic, optoelectronic, and physical sensing devices.
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy and quantum control of mechanical oscillators via opto- and electromechanics. The mechanical quality factor ($Q$) of these systems determines the thermomechanical force noise and the thermal decoherence rate of mechanical quantum states. While the dissipation rate is typically set by the bulk acoustic properties of the material, by exploiting dissipation dilution, mechanical $Q$ can be engineered through geometry and increased by many orders of magnitude. Recently, soft clamping in combination with strain engineering has enabled room temperature quality factors approaching one billion ($10^9$) in millimeter-scale resonators. Here we demonstrate a new approach to soft clamping which exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices. In contrast to previous approaches, which rely on cascaded elements to achieve soft clamping, perimeter modes are soft clamped due to symmetry and the boundary conditions at the polygon vertices. Perimeter modes reach $Q$ of 3.6 billion at room temperature while spanning only two acoustic wavelengths---a 4-fold improvement over the state-of-the-art mechanical $Q$ with 10-fold smaller devices. The small size of our devices makes them well-suited for near-field integration with microcavities for quantum optomechanical experiments. Moreover, their compactness allows the realization of phononic lattices. We demonstrate a one-dimensional Su-Schrieffer-Heeger chain of high-$Q$ perimeter modes coupled via nearest-neighbour interaction and characterize the localized edge modes.
138 - G. Gruber 2021
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users, since it can be operated in existing commercial FEBID systems without making any modification. The presented method allows to engineer hybrid nanomechanical resonators with precisely tailored functionality. It also appears as a new tool for studying growth dynamics of ultra-thin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods.
Although 2D materials hold great potential for next-generation pressure sensors, recent studies revealed that gases permeate along the membrane-surface interface that is only weakly bound by van der Waals interactions, necessitating additional sealing procedures. In this work, we demonstrate the use of free-standing complex oxides as self-sealing membranes that allow the reference cavity of pressure sensors to be sealed by a simple anneal. To test the hermeticity, we study the gas permeation time constants in nano-mechanical resonators made from SrRuO3 and SrTiO3 membranes suspended over SiO2/Si cavities which show an improvement up to 4 orders of magnitude in the permeation time constant after annealing the devices for 15 minutes. Similar devices fabricated on Si3N4/Si do not show such improvements, suggesting that the adhesion increase over SiO2 is mediated by oxygen bonds that are formed at the SiO2/complex oxide interface during the self-sealing anneal. We confirm the enhancement of adhesion by picosecond ultrasonics measurements which show an increase in the interfacial stiffness by 70% after annealing. Since it is straigthforward to apply, the presented self-sealing method is thus a promising route toward realizing ultrathin hermetic pressure sensors.
We have studied damping in polycrystalline Al nanomechanical resonators by measuring the temperature dependence of their resonance frequency and quality factor over a temperature range of 0.1 - 4 K. Two regimes are clearly distinguished with a crossover temperature of 1 K. Below 1 K we observe a logarithmic temperature dependence of the frequency and linear dependence of damping that cannot be explained by the existing standard models. We attribute these phenomena to the effect of the two-level systems characterized by the unexpectedly long (at least two orders of magnitude longer) relaxation times and discuss possible microscopic models for such systems. We conclude that the dynamics of the two-level systems is dominated by their interaction with one-dimensional phonon modes of the resonators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا