Do you want to publish a course? Click here

Limit theorems for linear random fields with innovations in the domain of attraction of a stable law

61   0   0.0 ( 0 )
 Added by Hailin Sang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we study the convergence in distribution and the local limit theorem for the partial sums of linear random fields with i.i.d. innovations that have infinite second moment and belong to the domain of attraction of a stable law with index $0<alphaleq2$ under the condition that the innovations are centered if $1<alphaleq2$ and are symmetric if $alpha=1$. We establish these two types of limit theorems as long as the linear random fields are well-defined, the coefficients are either absolutely summable or not absolutely summable.



rate research

Read More

We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ converges to $0$ as $tto infty$ and is regularly varying with index $(gamma_0-1)^{-1}$. Then we show that, for a large class of non-negative testing functions $f$, the distribution of ${X_t(f);mathbf P_mu(cdot||X_t| eq 0)}$, after appropriate rescaling, converges weakly to a positive random variable $mathbf z^{(gamma_0-1)}$ with Laplace transform $E[e^{-umathbf z^{(gamma_0-1)}}]=1-(1+u^{-(gamma_0-1)})^{-1/(gamma_0-1)}.$
Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and the volume of the random convex hull of $X_1,ldots,X_{r+1}$ are established in high dimensions, that is, as $r$ and $n$ tend to infinity simultaneously. This includes, Berry-Esseen-type central limit theorems, log-normal limit theorems, moderate and large deviations. Also different types of mod-$phi$ convergence are derived. The results heavily depend on the asymptotic growth of $r$ relative to $n$. For example, we prove that the fluctuations of the volume of the simplex are normal (respectively, log-normal) if $r=o(n)$ (respectively, $rsim alpha n$ for some $0 < alpha < 1$).
There have been several recent articles studying homology of various types of random simplicial complexes. Several theorems have concerned thresholds for vanishing of homology, and in some cases expectations of the Betti numbers. However little seems known so far about limiting distributions of random Betti numbers. In this article we establish Poisson and normal approximation theorems for Betti numbers of different kinds of random simplicial complex: ErdH{o}s-Renyi random clique complexes, random Vietoris-Rips complexes, and random v{C}ech complexes. These results may be of practical interest in topological data analysis.
Max-stable random fields are very appropriate for the statistical modelling of spatial extremes. Hence, integrals of functions of max-stable random fields over a given region can play a key role in the assessment of the risk of natural disasters, meaning that it is relevant to improve our understanding of their probabilistic behaviour. For this purpose, in this paper, we propose a general central limit theorem for functions of stationary max-stable random fields on $mathbb{R}^d$. Then, we show that appropriate functions of the Brown-Resnick random field with a power variogram and of the Smith random field satisfy the central limit theorem. Another strong motivation for our work lies in the fact that central limit theorems for random fields on $mathbb{R}^d$ have been barely considered in the literature. As an application, we briefly show the usefulness of our results in a risk assessment context.
In this paper, we study the asymptotic behavior of a supercritical $(xi,psi)$-superprocess $(X_t)_{tgeq 0}$ whose underlying spatial motion $xi$ is an Ornstein-Uhlenbeck process on $mathbb R^d$ with generator $L = frac{1}{2}sigma^2Delta - b x cdot abla$ where $sigma, b >0$; and whose branching mechanism $psi$ satisfies Greys condition and some perturbation condition which guarantees that, when $zto 0$, $psi(z)=-alpha z + eta z^{1+beta} (1+o(1))$ with $alpha > 0$, $eta>0$ and $betain (0, 1)$. Some law of large numbers and $(1+beta)$-stable central limit theorems are established for $(X_t(f) )_{tgeq 0}$, where the function $f$ is assumed to be of polynomial growth. A phase transition arises for the central limit theorems in the sense that the forms of the central limit theorem are different in three different regimes corresponding the branching rate being relatively small, large or critical at a balanced value.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا