No Arabic abstract
Max-stable random fields are very appropriate for the statistical modelling of spatial extremes. Hence, integrals of functions of max-stable random fields over a given region can play a key role in the assessment of the risk of natural disasters, meaning that it is relevant to improve our understanding of their probabilistic behaviour. For this purpose, in this paper, we propose a general central limit theorem for functions of stationary max-stable random fields on $mathbb{R}^d$. Then, we show that appropriate functions of the Brown-Resnick random field with a power variogram and of the Smith random field satisfy the central limit theorem. Another strong motivation for our work lies in the fact that central limit theorems for random fields on $mathbb{R}^d$ have been barely considered in the literature. As an application, we briefly show the usefulness of our results in a risk assessment context.
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$. We obtain product-CLT, a modification of classical central limit theorem, which can be useful in the study of random projections. We also obtain the rate of convergence which is similar to the Berry-Essen theorem in the classical CLT.
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the density of the population, together with upper bounds for the density of the most populated site and the replica overlap. We also discuss the phase transition of this model in connection with directed polymers in random environment.
We consider bootstrap percolation and diffusion in sparse random graphs with fixed degrees, constructed by configuration model. Every node has two states: it is either active or inactive. We assume that to each node is assigned a nonnegative (integer) threshold. The diffusion process is initiated by a subset of nodes with threshold zero which consists of initially activated nodes, whereas every other node is inactive. Subsequently, in each round, if an inactive node with threshold $theta$ has at least $theta$ of its neighbours activated, then it also becomes active and remains so forever. This is repeated until no more nodes become activated. The main result of this paper provides a central limit theorem for the final size of activated nodes. Namely, under suitable assumptions on the degree and threshold distributions, we show that the final size of activated nodes has asymptotically Gaussian fluctuations.
We study Random Walks in an i.i.d. Random Environment (RWRE) defined on $b$-regular trees. We prove a functional central limit theorem (FCLT) for transient processes, under a moment condition on the environment. We emphasize that we make no uniform ellipticity assumptions. Our approach relies on regenerative levels, i.e. levels that are visited exactly once. On the way, we prove that the distance between consecutive regenerative levels have a geometrically decaying tail. In the second part of this paper, we apply our results to Linearly Edge-Reinforced Random Walk (LERRW) to prove FCLT when the process is defined on $b$-regular trees, with $ b ge 4$, substantially improving the results of the first author (see Theorem 3 of Collevecchio (2006)).
We prove a quenched central limit theorem for random walks in i.i.d. weakly elliptic random environments in the ballistic regime. Such theorems have been proved recently by Rassoul-Agha and Seppalainen in [10] and Berger and Zeitouni in [2] under the assumption of large finite moments for the regeneration time. In this paper, with the extra $(T)_{gamma}$ condition of Sznitman we reduce the moment condition to ${Bbb E}(tau^2(ln tau)^{1+m})<+infty$ for $m>1+1/gamma$, which allows the inclusion of new non-uniformly elliptic examples such as Dirichlet random environments.