No Arabic abstract
We consider a critical superprocess ${X;mathbf P_mu}$ with general spatial motion and spatially dependent stable branching mechanism with lowest stable index $gamma_0 > 1$. We first show that, under some conditions, $mathbf P_{mu}(|X_t| eq 0)$ converges to $0$ as $tto infty$ and is regularly varying with index $(gamma_0-1)^{-1}$. Then we show that, for a large class of non-negative testing functions $f$, the distribution of ${X_t(f);mathbf P_mu(cdot||X_t| eq 0)}$, after appropriate rescaling, converges weakly to a positive random variable $mathbf z^{(gamma_0-1)}$ with Laplace transform $E[e^{-umathbf z^{(gamma_0-1)}}]=1-(1+u^{-(gamma_0-1)})^{-1/(gamma_0-1)}.$
In this paper, we first establish a decomposition theorem for size-biased Poisson random measures. As consequences of this decomposition theorem, we get a spine decomposition theorem and a 2-spine decomposition theorem for some critical superprocesses. Then we use these spine decomposition theorems to give probabilistic proofs of the asymptotic behavior of the survival probability and Yagloms exponential limit law for critical superprocesses.
We consider one-dimensional branching Brownian motion in which particles are absorbed at the origin. We assume that when a particle branches, the offspring distribution is supercritical, but the particles are given a critical drift towards the origin so that the process eventually goes extinct with probability one. We establish precise asymptotics for the probability that the process survives for a large time t, building on previous results by Kesten (1978) and Berestycki, Berestycki, and Schweinsberg (2014). We also prove a Yaglom-type limit theorem for the behavior of the process conditioned to survive for an unusually long time, providing an essentially complete answer to a question first addressed by Kesten (1978). An important tool in the proofs of these results is the convergence of a certain observable to a continuous state branching process. Our proofs incorporate new ideas which might be of use in other branching models.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the supercritical case, when the process survives with a positive probability and grows exponentially fast on the nonextinction set. Our main is goal is establish Fourier techniques for this model, which allow to obtain a number of precise estimates related to limit theorems. As a consequence we provide new results concerning central limit theorem, Edgeworth expansions and renewal theorem for $log Z_n$.
In this paper, we study the asymptotic behavior of a supercritical $(xi,psi)$-superprocess $(X_t)_{tgeq 0}$ whose underlying spatial motion $xi$ is an Ornstein-Uhlenbeck process on $mathbb R^d$ with generator $L = frac{1}{2}sigma^2Delta - b x cdot abla$ where $sigma, b >0$; and whose branching mechanism $psi$ satisfies Greys condition and some perturbation condition which guarantees that, when $zto 0$, $psi(z)=-alpha z + eta z^{1+beta} (1+o(1))$ with $alpha > 0$, $eta>0$ and $betain (0, 1)$. Some law of large numbers and $(1+beta)$-stable central limit theorems are established for $(X_t(f) )_{tgeq 0}$, where the function $f$ is assumed to be of polynomial growth. A phase transition arises for the central limit theorems in the sense that the forms of the central limit theorem are different in three different regimes corresponding the branching rate being relatively small, large or critical at a balanced value.
This paper is a continuation of our recent paper (Elect. J. Probab. 24 (2019), no. 141) and is devoted to the asymptotic behavior of a class of supercritical super Ornstein-Uhlenbeck processes $(X_t)_{tgeq 0}$ with branching mechanisms of infinite second moment. In the aforementioned paper, we proved stable central limit theorems for $X_t(f) $ for some functions $f$ of polynomial growth in three different regimes. However, we were not able to prove central limit theorems for $X_t(f) $ for all functions $f$ of polynomial growth. In this note, we show that the limit stable random variables in the three different regimes are independent, and as a consequence, we get stable central limit theorems for $X_t(f) $ for all functions $f$ of polynomial growth.