Do you want to publish a course? Click here

Energy Minimization for IRS-aided WPCNs with Non-linear Energy Harvesting Model

81   0   0.0 ( 0 )
 Added by Piao Zeng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper considers an intelligent reflecting surface(IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy from a power station (PS) in the downlink (DL) and then transmit information using non-orthogonal multiple access (NOMA) to a data sink in the uplink (UL). However, most existing works on WPCNs adopted the simplified linear energy-harvesting model and also cannot guarantee strict user quality-of-service requirements. To address these issues, we aim to minimize the total transmit energy consumption at the PS by jointly optimizing the resource allocation and IRS phase shifts over time, subject to the minimum throughput requirements of all devices. The formulated problem is decomposed into two subproblems, and solved iteratively in an alternative manner by employing difference of convex functions programming, successive convex approximation, and penalty-based algorithm. Numerical results demonstrate the significant performance gains achieved by the proposed algorithm over benchmark schemes and reveal the benefits of integrating IRS into WPCNs. In particular, employing different IRS phase shifts over UL and DL outperforms the case with static IRS beamforming.



rate research

Read More

This paper considers an intelligent reflecting sur-face (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmit-ter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we optimize jointly beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem...
The rapid growth of the so-called Internet of Things is expected to significantly expand and support the deployment of resource-limited devices. Therefore, intelligent scheduling protocols and technologies such as wireless power transfer, are important for the efficient implementation of these massive low-powered networks. This paper studies the performance of a wireless powered communication network, where multiple batteryless devices harvest radio-frequency from a dedicated transmitter in order to communicate with a common information receiver (IR). We investigate several novel selection schemes, corresponding to different channel state information requirements and implementation complexities. In particular, each scheme schedules the $k$-th best device based on: a) the end-to-end (e2e) signal-to-noise ratio (SNR), b) the energy harvested at the devices, c) the uplink transmission to the IR, and d) the conventional/legacy max-min selection policy. We consider a non-linear energy harvesting (EH) model and derive analytical expressions for the outage probability of each selection scheme by using tools from high order statistics. %Our results show that, the performance of all the proposed schemes converges to an error floor due to the saturation effects of the considered EH model. Moreover, an asymptotic scenario in terms of the number of devices is considered and, by applying extreme value theory, the systems performance is evaluated. We derive a complete analytical framework that provides useful insights for the design and realization of such networks.
In this paper, we propose a new dynamic IRS beamforming framework to boost the sum throughput of an intelligent reflecting surface (IRS) aided wireless powered communication network (WPCN). Specifically, the IRS phase-shift vectors across time and resource allocation are jointly optimized to enhance the efficiencies of both downlink wireless power transfer (DL WPT) and uplink wireless information transmission (UL WIT) between a hybrid access point (HAP) and multiple wirelessly powered devices. To this end, we first study three special cases of the dynamic IRS beamforming,namely user-adaptive IRS beamforming, UL-adaptive IRS beamforming, and static IRS beamforming,by characterizing their optimal performance relationships and proposing corresponding algorithms. Interestingly, it is rigorously proved that the latter two cases achieve the same throughput, thus helping halve the number of IRS phase shifts to be optimized and signalling overhead practically required for UL-adaptive IRS beamforming. Then, we propose a general optimization framework for dynamic IRS beamforming, which is applicable for any given number of IRS phase-shift vectors available. Despite of the non-convexity of the general problem with highly coupled optimization variables, we propose two algorithms to solve it and particularly, the low-complexity algorithm exploits the intrinsic structure of the optimal solution as well as the solutions to the cases with user-adaptive and static IRS beamforming. Simulation results validate our theoretical findings, illustrate the practical significance of IRS with dynamic beamforming for spectral and energy efficient WPCNs, and demonstrate the effectiveness of our proposed designs over various benchmark schemes.
165 - Hong Shen , Wei Xu , Shulei Gong 2020
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking into account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework. To circumvent the non-convexity of the formulated design problem, we first derive a closed-form optimal solution to the source transmit beamforming. Then, for the optimization of IRS reflect beamforming, we obtain an upper bound to the optimal objective value via solving a single convex problem. A low-complexity minorization-maximization (MM) algorithm was developed to approach the upper bound. Simulation results demonstrate that the proposed beamforming design is more robust to the hardware impairments than that of the conventional SNR maximized scheme. Moreover, compared to the scenario without deploying an IRS, the performance gain brought by incorporating the hardware impairments is more evident for the IRS-aided communications.
In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) in a point-to-point system, adopting practical $M$-ary modulation. We take into account the fact that the receivers radio-frequency (RF) energy harvesting circuit can only harvest energy when the received signal power is greater than a certain sensitivity level. For both power-splitting (PS) and time-switching (TS) schemes, we derive the energy harvesting performance as well as the information decoding performance for the Nakagami-$m$ fading channel. We also analyze the performance tradeoff between energy harvesting and information decoding by studying an optimization problem, which maximizes the information decoding performance and satisfies a constraint on the minimum harvested energy. Our analysis shows that (i) for the PS scheme, modulations with high peak-to-average power ratio achieve better energy harvesting performance, (ii) for the TS scheme, it is desirable to concentrate the power for wireless power transfer in order to minimize the non-harvested energy caused by the RF energy harvesting sensitivity level, and (iii) channel fading is beneficial for energy harvesting in both PS and TS schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا