Do you want to publish a course? Click here

SWIPT with Practical Modulation and RF Energy Harvesting Sensitivity

333   0   0.0 ( 0 )
 Added by Wanchun Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the performance of simultaneous wireless information and power transfer (SWIPT) in a point-to-point system, adopting practical $M$-ary modulation. We take into account the fact that the receivers radio-frequency (RF) energy harvesting circuit can only harvest energy when the received signal power is greater than a certain sensitivity level. For both power-splitting (PS) and time-switching (TS) schemes, we derive the energy harvesting performance as well as the information decoding performance for the Nakagami-$m$ fading channel. We also analyze the performance tradeoff between energy harvesting and information decoding by studying an optimization problem, which maximizes the information decoding performance and satisfies a constraint on the minimum harvested energy. Our analysis shows that (i) for the PS scheme, modulations with high peak-to-average power ratio achieve better energy harvesting performance, (ii) for the TS scheme, it is desirable to concentrate the power for wireless power transfer in order to minimize the non-harvested energy caused by the RF energy harvesting sensitivity level, and (iii) channel fading is beneficial for energy harvesting in both PS and TS schemes.



rate research

Read More

This paper considers an intelligent reflecting sur-face (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmit-ter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we optimize jointly beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem...
80 - Piao Zeng , Qingqing Wu , 2021
This paper considers an intelligent reflecting surface(IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy from a power station (PS) in the downlink (DL) and then transmit information using non-orthogonal multiple access (NOMA) to a data sink in the uplink (UL). However, most existing works on WPCNs adopted the simplified linear energy-harvesting model and also cannot guarantee strict user quality-of-service requirements. To address these issues, we aim to minimize the total transmit energy consumption at the PS by jointly optimizing the resource allocation and IRS phase shifts over time, subject to the minimum throughput requirements of all devices. The formulated problem is decomposed into two subproblems, and solved iteratively in an alternative manner by employing difference of convex functions programming, successive convex approximation, and penalty-based algorithm. Numerical results demonstrate the significant performance gains achieved by the proposed algorithm over benchmark schemes and reveal the benefits of integrating IRS into WPCNs. In particular, employing different IRS phase shifts over UL and DL outperforms the case with static IRS beamforming.
We consider the problem of maximizing the harvested power in Multiple Input Multiple Output (MIMO) Simultaneous Wireless Information and Power Transfer (SWIPT) systems with power splitting reception. Different from recently proposed designs, we target with our novel problem formulation at the jointly optimal transmit precoding and receive uniform power splitting (UPS) ratio maximizing the harvested power, while ensuring that the Quality-of-Service (QoS) requirement of the MIMO link is satisfied. We assume generic practical Radio Frequency (RF) Energy Harvesting (EH) receive operation that results in a non-convex optimization problem for the design parameters, which we then solve optimally after formulating it in an equivalent generalized convex form. Our representative results including comparisons of achievable EH gains with benchmark schemes provide key insights on various system parameters.
In this paper, we investigate the energy-efficient hybrid precoding design for integrated multicast-unicast millimeter wave (mmWave) system, where the simultaneous wireless information and power transform is considered at receivers. We adopt two sparse radio frequency chain antenna structures at the base station (BS), i.e., fully-connected and subarray structures, and design the codebook-based analog precoding according to the different structures. Then, we formulate a joint digital multicast, unicast precoding and power splitting ratio optimization problem to maximize the energy efficiency of the system, while the maximum transmit power at the BS and minimum harvested energy at receivers are considered. Due to its difficulty to directly solve the formulated problem, we equivalently transform the fractional objective function into a subtractive form one and propose a two-loop iterative algorithm to solve it. For the outer loop, the classic Bi-section iterative algorithm is applied. For the inner loop, we transform the formulated problem into a convex one by successive convex approximation techniques and propose an iterative algorithm to solve it. Meanwhile, to reduce the complexity of the inner loop, we develop a zero forcing (ZF) technique-based low complexity iterative algorithm. Specifically, the ZF technique is applied to cancel the inter-unicast interference and the first order Taylor approximation is used for the convexification of the non-convex constraints in the original problem. Finally, simulation results are provided to compare the performance of the proposed algorithms under different schemes.
The rapid growth of the so-called Internet of Things is expected to significantly expand and support the deployment of resource-limited devices. Therefore, intelligent scheduling protocols and technologies such as wireless power transfer, are important for the efficient implementation of these massive low-powered networks. This paper studies the performance of a wireless powered communication network, where multiple batteryless devices harvest radio-frequency from a dedicated transmitter in order to communicate with a common information receiver (IR). We investigate several novel selection schemes, corresponding to different channel state information requirements and implementation complexities. In particular, each scheme schedules the $k$-th best device based on: a) the end-to-end (e2e) signal-to-noise ratio (SNR), b) the energy harvested at the devices, c) the uplink transmission to the IR, and d) the conventional/legacy max-min selection policy. We consider a non-linear energy harvesting (EH) model and derive analytical expressions for the outage probability of each selection scheme by using tools from high order statistics. %Our results show that, the performance of all the proposed schemes converges to an error floor due to the saturation effects of the considered EH model. Moreover, an asymptotic scenario in terms of the number of devices is considered and, by applying extreme value theory, the systems performance is evaluated. We derive a complete analytical framework that provides useful insights for the design and realization of such networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا