Do you want to publish a course? Click here

Max-Min Fair Energy-Efficient Beamforming Design for Intelligent Reflecting Surface-Aided SWIPT Systems with Non-linear Energy Harvesting Model

138   0   0.0 ( 0 )
 Added by Shayan Zargari
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper considers an intelligent reflecting sur-face (IRS)-aided simultaneous wireless information and power transfer (SWIPT) network, where multiple users decode data and harvest energy from the transmitted signal of a transmit-ter. The proposed design framework exploits the cost-effective IRS to establish favorable communication environment to improve the fair energy efficient. In particular, we study the max-min energy efficiency (EE) of the system by jointly designing the transmit information and energy beamforming at the base station (BS), phase shifts at the IRS, as well as the power splitting (PS) ratio at all users subject to the minimum rate, minimum harvested energy, and transmit power constraints. The formulated problem is non-convex and thus challenging to be solved. We propose two algorithms namely penalty-based and inner approximation (IA)-based to handle the non-convexity of the optimization problem. As such, we divide the original problem into two sub-problems and apply the alternating optimization (AO) algorithm for both proposed algorithms to handle it iteratively. In particular, in the penalty-based algorithm for the first sub-problem, the semi-definite relaxation (SDR) technique, difference of convex functions (DC) programming, majorization-minimization (MM) approach, and fractional programming theory are exploited to transform the non-convex optimization problem into a convex form that can be addressed efficiently. For the second sub-problem, a penalty-based approach is proposed to handle the optimization on the phase shifts introduced by the IRS with the proposed algorithms. For the IA-based method, we optimize jointly beamforming vectors and phase shifts while the PS ratio is solved optimally in the first sub-problem...



rate research

Read More

80 - Piao Zeng , Qingqing Wu , 2021
This paper considers an intelligent reflecting surface(IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy from a power station (PS) in the downlink (DL) and then transmit information using non-orthogonal multiple access (NOMA) to a data sink in the uplink (UL). However, most existing works on WPCNs adopted the simplified linear energy-harvesting model and also cannot guarantee strict user quality-of-service requirements. To address these issues, we aim to minimize the total transmit energy consumption at the PS by jointly optimizing the resource allocation and IRS phase shifts over time, subject to the minimum throughput requirements of all devices. The formulated problem is decomposed into two subproblems, and solved iteratively in an alternative manner by employing difference of convex functions programming, successive convex approximation, and penalty-based algorithm. Numerical results demonstrate the significant performance gains achieved by the proposed algorithm over benchmark schemes and reveal the benefits of integrating IRS into WPCNs. In particular, employing different IRS phase shifts over UL and DL outperforms the case with static IRS beamforming.
This paper investigates the passive beamforming and deployment design for an intelligent reflecting surface (IRS) aided full-duplex (FD) wireless system, where an FD access point (AP) communicates with an uplink (UL) user and a downlink (DL) user simultaneously over the same time-frequency dimension with the help of IRS. Under this setup, we consider three deployment cases: 1) two distributed IRSs placed near the UL user and DL user, respectively; 2) one centralized IRS placed near the DL user; 3) one centralized IRS placed near the UL user. In each case, we aim to minimize the weighted sum transmit power consumption of the AP and UL user by jointly optimizing their transmit power and the passive reflection coefficients at the IRS (or IRSs), subject to the UL and DL users rate constraints and the uni-modulus constraints on the IRS reflection coefficients. First, we analyze the minimum transmit power required in the IRS-aided FD system under each deployment scheme, and compare it with that of the corresponding half-duplex (HD) system. We show that the FD system outperforms its HD counterpart for all IRS deployment schemes, while the distributed deployment further outperforms the other two centralized deployment schemes. Next, we transform the challenging power minimization problem into an equivalent but more tractable form and propose an efficient algorithm to solve it based on the block coordinate descent (BCD) method. Finally, numerical results are presented to validate our analysis as well as the efficacy of the proposed passive beamforming design.
316 - Ming-Min Zhao , An Liu , Yubo Wan 2020
Intelligent reflecting surface (IRS) is an emerging technology that is able to reconfigure the wireless channel via tunable passive signal reflection and thereby enhance the spectral and energy efficiency of wireless networks cost-effectively. In this paper, we study an IRS-aided multiuser multiple-input single-output (MISO) wireless system and adopt the two-timescale (TTS) transmission to reduce the signal processing complexity and channel training overhead as compared to the existing schemes based on the instantaneous channel state information (I-CSI), and at the same time, exploit the multiuser channel diversity in transmission scheduling. Specifically, the long-term passive beamforming is designed based on the statistical CSI (S-CSI) of all links, while the short-term active beamforming is designed to cater to the I-CSI of all users reconfigured channels with optimized IRS phase shifts. We aim to minimize the average transmit power at the access point (AP), subject to the users individual quality of service (QoS) constraints. The formulated stochastic optimization problem is non-convex and difficult to solve since the long-term and short-term design variables are complicatedly coupled in the QoS constraints. To tackle this problem, we propose an efficient algorithm, called the primal-dual decomposition based TTS joint active and passive beamforming (PDD-TJAPB), where the original problem is decomposed into a long-term problem and a family of short-term problems, and the deep unfolding technique is employed to extract gradient information from the short-term problems to construct a convex surrogate problem for the long-term problem. The proposed algorithm is proved to converge to a stationary solution of the original problem almost surely. Simulation results are presented which demonstrate the advantages and effectiveness of the proposed algorithm as compared to benchmark schemes.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
Bistatic backscatter communication (BackCom) allows passive tags to transmit over extended ranges, but at the cost of having carrier emitters either transmitting at high powers or being deployed very close to tags. In this paper, we examine how the presence of an intelligent reflecting surface (IRS) could benefit the bistatic BackCom system. We study the transmit power minimization problem at the carrier emitter, where its transmit beamforming vector is jointly optimized with the IRS phase shifts, whilst guaranteeing a required BackCom performance. A unique feature in this system setup is the multiple IRS reflections experienced by signals traveling from the carrier emitter to the reader, which renders the optimization problem highly nonconvex. Therefore, we propose algorithms based on the minorization-maximization and alternating optimization techniques to obtain approximate solutions for the joint design. We also propose low-complexity algorithms based on successive optimization of individual phase shifts. Our results reveal considerable transmit power savings in both single-tag and multi-tag systems, even with moderate IRS sizes, which may be translated to significant range improvements using the original transmit power or reduce the reliance of tags on carrier emitters located at close range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا