Do you want to publish a course? Click here

IRS-Aided WPCNs: A New Optimization Framework for Dynamic IRS Beamforming

83   0   0.0 ( 0 )
 Added by Qingqing Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a new dynamic IRS beamforming framework to boost the sum throughput of an intelligent reflecting surface (IRS) aided wireless powered communication network (WPCN). Specifically, the IRS phase-shift vectors across time and resource allocation are jointly optimized to enhance the efficiencies of both downlink wireless power transfer (DL WPT) and uplink wireless information transmission (UL WIT) between a hybrid access point (HAP) and multiple wirelessly powered devices. To this end, we first study three special cases of the dynamic IRS beamforming,namely user-adaptive IRS beamforming, UL-adaptive IRS beamforming, and static IRS beamforming,by characterizing their optimal performance relationships and proposing corresponding algorithms. Interestingly, it is rigorously proved that the latter two cases achieve the same throughput, thus helping halve the number of IRS phase shifts to be optimized and signalling overhead practically required for UL-adaptive IRS beamforming. Then, we propose a general optimization framework for dynamic IRS beamforming, which is applicable for any given number of IRS phase-shift vectors available. Despite of the non-convexity of the general problem with highly coupled optimization variables, we propose two algorithms to solve it and particularly, the low-complexity algorithm exploits the intrinsic structure of the optimal solution as well as the solutions to the cases with user-adaptive and static IRS beamforming. Simulation results validate our theoretical findings, illustrate the practical significance of IRS with dynamic beamforming for spectral and energy efficient WPCNs, and demonstrate the effectiveness of our proposed designs over various benchmark schemes.



rate research

Read More

165 - Hong Shen , Wei Xu , Shulei Gong 2020
In this paper, we focus on intelligent reflecting surface (IRS) assisted multi-antenna communications with transceiver hardware impairments encountered in practice. In particular, we aim to maximize the received signal-to-noise ratio (SNR) taking into account the impact of hardware impairments, where the source transmit beamforming and the IRS reflect beamforming are jointly designed under the proposed optimization framework. To circumvent the non-convexity of the formulated design problem, we first derive a closed-form optimal solution to the source transmit beamforming. Then, for the optimization of IRS reflect beamforming, we obtain an upper bound to the optimal objective value via solving a single convex problem. A low-complexity minorization-maximization (MM) algorithm was developed to approach the upper bound. Simulation results demonstrate that the proposed beamforming design is more robust to the hardware impairments than that of the conventional SNR maximized scheme. Moreover, compared to the scenario without deploying an IRS, the performance gain brought by incorporating the hardware impairments is more evident for the IRS-aided communications.
80 - Piao Zeng , Qingqing Wu , 2021
This paper considers an intelligent reflecting surface(IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy from a power station (PS) in the downlink (DL) and then transmit information using non-orthogonal multiple access (NOMA) to a data sink in the uplink (UL). However, most existing works on WPCNs adopted the simplified linear energy-harvesting model and also cannot guarantee strict user quality-of-service requirements. To address these issues, we aim to minimize the total transmit energy consumption at the PS by jointly optimizing the resource allocation and IRS phase shifts over time, subject to the minimum throughput requirements of all devices. The formulated problem is decomposed into two subproblems, and solved iteratively in an alternative manner by employing difference of convex functions programming, successive convex approximation, and penalty-based algorithm. Numerical results demonstrate the significant performance gains achieved by the proposed algorithm over benchmark schemes and reveal the benefits of integrating IRS into WPCNs. In particular, employing different IRS phase shifts over UL and DL outperforms the case with static IRS beamforming.
132 - Meng Hua , Qingqing Wu 2021
This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink (DL) and meanwhile receives information signals in the uplink (UL) with the help of IRS. Particularly, we propose three types of IRS beamforming configurations to strike a balance between the system performance and signaling overhead as well as implementation complexity. We first propose the fully dynamic IRS beamforming, where the IRS phase-shift vectors vary with each time slot for both DL wireless energy transfer (WET) and UL wireless information transmission (WIT). To further reduce signaling overhead and implementation complexity, we then study two special cases, namely, partially dynamic IRS beamforming and static IRS beamforming. For the former case, two different phase-shift vectors can be exploited for the DL WET and the UL WIT, respectively, whereas for the latter case, the same phase-shift vector needs to be applied for both DL and UL transmissions. We aim to maximize the system throughput by jointly optimizing the time allocation, HAP transmit power, and IRS phase shifts for the above three cases. Two efficient algorithms based on alternating optimization and penalty-based algorithms are respectively proposed for both perfect self-interference cancellation (SIC) case and imperfect SIC case by applying successive convex approximation and difference-of-convex optimization techniques. Simulation results demonstrate the benefits of IRS for enhancing the performance of FD-WPCN, and also show that the IRS-aided FD-WPCN is able to achieve significantly performance gain compared to its counterpart with half-duplex when the self-interference (SI) is properly suppressed.
This paper investigates a joint beamforming design in a multiuser multiple-input single-output (MISO) communication network aided with an intelligent reflecting surface (IRS) panel. The symbol-level precoding (SLP) is adopted to enhance the system performance by exploiting the multiuser interference (MUI) with consideration of bounded channel uncertainty. The joint beamforming design is formulated into a nonconvex worst-case robust programming to minimize the transmit power subject to single-to-noise ratio (SNR) requirements. To address the challenges due to the constant modulus and the coupling of the beamformers, we first study the single-user case. Specifically, we propose and compare two algorithms based on the semidefinite relaxation (SDR) and alternating optimization (AO) methods, respectively. It turns out that the AO-based algorithm has much lower computational complexity but with almost the same power to the SDR-based algorithm. Then, we apply the AO technique to the multiuser case and thereby develop an algorithm based on the proximal gradient descent (PGD) method. The algorithm can be generalized to the case of finite-resolution IRS and the scenario with direct links from the transmitter to the users. Numerical results show that the SLP can significantly improve the system performance. Meanwhile, 3-bit phase shifters can achieve near-optimal power performance.
82 - Hong Shen , Tian Ding , Wei Xu 2020
We study the beamforming optimization for an intelligent reflecting surface (IRS)-aided full-duplex (FD) communication system in this letter. Specifically, we maximize the sum rate of bi-directional transmissions by jointly optimizing the transmit beamforming and the beamforming of the IRS reflection. A fast converging alternating algorithm is developed to tackle this problem. In each iteration of the proposed algorithm, the solutions to the transmit beamforming and the IRS reflect beamforming are obtained in a semi-closed form and a closed form, respectively. Compared to an existing method based on the Arimoto-Blahut algorithm, the proposed method achieves almost the same performance while enjoying much faster convergence and lower computational complexity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا