Do you want to publish a course? Click here

DuTrust: A Sentiment Analysis Dataset for Trustworthiness Evaluation

101   0   0.0 ( 0 )
 Added by Lijie Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While deep learning models have greatly improved the performance of most artificial intelligence tasks, they are often criticized to be untrustworthy due to the black-box problem. Consequently, many works have been proposed to study the trustworthiness of deep learning. However, as most open datasets are designed for evaluating the accuracy of model outputs, there is still a lack of appropriate datasets for evaluating the inner workings of neural networks. The lack of datasets obviously hinders the development of trustworthiness research. Therefore, in order to systematically evaluate the factors for building trustworthy systems, we propose a novel and well-annotated sentiment analysis dataset to evaluate robustness and interpretability. To evaluate these factors, our dataset contains diverse annotations about the challenging distribution of instances, manual adversarial instances and sentiment explanations. Several evaluation metrics are further proposed for interpretability and robustness. Based on the dataset and metrics, we conduct comprehensive comparisons for the trustworthiness of three typical models, and also study the relations between accuracy, robustness and interpretability. We release this trustworthiness evaluation dataset at url{https://github/xyz} and hope our work can facilitate the progress on building more trustworthy systems for real-world applications.



rate research

Read More

Recent studies in big data analytics and natural language processing develop automatic techniques in analyzing sentiment in the social media information. In addition, the growing user base of social media and the high volume of posts also provide valuable sentiment information to predict the price fluctuation of the cryptocurrency. This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media and finding the correlation between them. While previous work has been developed to analyze sentiment in English social media posts, we propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo. We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network along with the historical cryptocurrency price movement to predict the price trend for future time frames. The conducted experiments demonstrate the proposed approach outperforms the state of the art auto regressive based model by 18.5% in precision and 15.4% in recall.
58 - Tooba Tehreem 2021
Sentiment analysis is a vast area in the Machine learning domain. A lot of work is done on datasets and their analysis of the English Language. In Pakistan, a huge amount of data is in roman Urdu language, it is scattered all over the social sites including Twitter, YouTube, Facebook and similar applications. In this study the focus domain of dataset gathering is YouTube comments. The Dataset contains the comments of people over different Pakistani dramas and TV shows. The Dataset contains multi-class classification that is grouped The comments into positive, negative and neutral sentiment. In this Study comparative analysis is done for five supervised learning Algorithms including linear regression, SVM, KNN, Multi layer Perceptron and Naive Bayes classifier. Accuracy, recall, precision and F-measure are used for measuring performance. Results show that accuracy of SVM is 64 percent, which is better than the rest of the list.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. %Considering the sentiment of the aspects(ACSA) and the overall review rating(RP) simultaneously has the potential to improve the overall performance. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset textbf{ASAP} including $46,730$ genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a $5$-star scale rating, each review is manually annotated according to its sentiment polarities towards $18$ pre-defined aspect categories. We hope the release of the dataset could shed some light on the fields of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.
While state-of-the-art NLP models have been achieving the excellent performance of a wide range of tasks in recent years, important questions are being raised about their robustness and their underlying sensitivity to systematic biases that may exist in their training and test data. Such issues come to be manifest in performance problems when faced with out-of-distribution data in the field. One recent solution has been to use counterfactually augmented datasets in order to reduce any reliance on spurious patterns that may exist in the original data. Producing high-quality augmented data can be costly and time-consuming as it usually needs to involve human feedback and crowdsourcing efforts. In this work, we propose an alternative by describing and evaluating an approach to automatically generating counterfactual data for data augmentation and explanation. A comprehensive evaluation on several different datasets and using a variety of state-of-the-art benchmarks demonstrate how our approach can achieve significant improvements in model performance when compared to models training on the original data and even when compared to models trained with the benefit of human-generated augmented data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا