Do you want to publish a course? Click here

LSTM Based Sentiment Analysis for Cryptocurrency Prediction

91   0   0.0 ( 0 )
 Added by Xuejiao Tang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent studies in big data analytics and natural language processing develop automatic techniques in analyzing sentiment in the social media information. In addition, the growing user base of social media and the high volume of posts also provide valuable sentiment information to predict the price fluctuation of the cryptocurrency. This research is directed to predicting the volatile price movement of cryptocurrency by analyzing the sentiment in social media and finding the correlation between them. While previous work has been developed to analyze sentiment in English social media posts, we propose a method to identify the sentiment of the Chinese social media posts from the most popular Chinese social media platform Sina-Weibo. We develop the pipeline to capture Weibo posts, describe the creation of the crypto-specific sentiment dictionary, and propose a long short-term memory (LSTM) based recurrent neural network along with the historical cryptocurrency price movement to predict the price trend for future time frames. The conducted experiments demonstrate the proposed approach outperforms the state of the art auto regressive based model by 18.5% in precision and 15.4% in recall.



rate research

Read More

Aspect-based sentiment analysis (ABSA) aims to predict fine-grained sentiments of comments with respect to given aspect terms or categories. In previous ABSA methods, the importance of aspect has been realized and verified. Most existing LSTM-based models take aspect into account via the attention mechanism, where the attention weights are calculated after the context is modeled in the form of contextual vectors. However, aspect-related information may be already discarded and aspect-irrelevant information may be retained in classic LSTM cells in the context modeling process, which can be improved to generate more effective context representations. This paper proposes a novel variant of LSTM, termed as aspect-aware LSTM (AA-LSTM), which incorporates aspect information into LSTM cells in the context modeling stage before the attention mechanism. Therefore, our AA-LSTM can dynamically produce aspect-aware contextual representations. We experiment with several representative LSTM-based models by replacing the classic LSTM cells with the AA-LSTM cells. Experimental results on SemEval-2014 Datasets demonstrate the effectiveness of AA-LSTM.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
The explosion of user-generated content (UGC)--e.g. social media posts, comments, and reviews--has motivated the development of NLP applications tailored to these types of informal texts. Prevalent among these applications have been sentiment analysis and machine translation (MT). Grounded in the observation that UGC features highly idiomatic, sentiment-charged language, we propose a decoder-side approach that incorporates automatic sentiment scoring into the MT candidate selection process. We train separate English and Spanish sentiment classifiers, then, using n-best candidates generated by a baseline MT model with beam search, select the candidate that minimizes the absolute difference between the sentiment score of the source sentence and that of the translation, and perform a human evaluation to assess the produced translations. Unlike previous work, we select this minimally divergent translation by considering the sentiment scores of the source sentence and translation on a continuous interval, rather than using e.g. binary classification, allowing for more fine-grained selection of translation candidates. The results of human evaluations show that, in comparison to the open-source MT baseline model on top of which our sentiment-based pipeline is built, our pipeline produces more accurate translations of colloquial, sentiment-heavy source texts.
141 - Yifan Yao , Lina Wang 2021
The present study aims to establish the model of the cryptocurrency price trend based on financial theory using the LSTM model with multiple combinations between the window length and the predicting horizons, the random walk model is also applied with different parameter settings.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا