Do you want to publish a course? Click here

ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction

63   0   0.0 ( 0 )
 Added by Jingang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two essential tasks to detect the fine-to-coarse sentiment polarities. %Considering the sentiment of the aspects(ACSA) and the overall review rating(RP) simultaneously has the potential to improve the overall performance. ACSA and RP are highly correlated and usually employed jointly in real-world e-commerce scenarios. While most public datasets are constructed for ACSA and RP separately, which may limit the further exploitation of both tasks. To address the problem and advance related researches, we present a large-scale Chinese restaurant review dataset textbf{ASAP} including $46,730$ genuine reviews from a leading online-to-offline (O2O) e-commerce platform in China. Besides a $5$-star scale rating, each review is manually annotated according to its sentiment polarities towards $18$ pre-defined aspect categories. We hope the release of the dataset could shed some light on the fields of sentiment analysis. Moreover, we propose an intuitive yet effective joint model for ACSA and RP. Experimental results demonstrate that the joint model outperforms state-of-the-art baselines on both tasks.



rate research

Read More

Aspect-category sentiment analysis (ACSA) aims to identify all the aspect categories mentioned in the text and their corresponding sentiment polarities. Some joint models have been proposed to address this task. However, these joint models do not solve the following two problems well: mismatching between the aspect categories and the sentiment words, and data deficiency of some aspect categories. To solve them, we propose a novel joint model which contains a contextualized aspect embedding layer and a shared sentiment prediction layer. The contextualized aspect embedding layer extracts the aspect category related information, which is used to generate aspect-specific representations for sentiment classification like traditional context-independent aspect embedding (CIAE) and is therefore called contextualized aspect embedding (CAE). The CAE can mitigate the mismatching problem because it is semantically more related to sentiment words than CIAE. The shared sentiment prediction layer transfers sentiment knowledge between aspect categories and alleviates the problem caused by data deficiency. Experiments conducted on SemEval 2016 Datasets show that our proposed model achieves state-of-the-art performance.
Aspect category sentiment analysis (ACSA) aims to predict the sentiment polarities of the aspect categories discussed in sentences. Since a sentence usually discusses one or more aspect categories and expresses different sentiments toward them, various attention-based methods have been developed to allocate the appropriate sentiment words for the given aspect category and obtain promising results. However, most of these methods directly use the given aspect category to find the aspect category-related sentiment words, which may cause mismatching between the sentiment words and the aspect categories when an unrelated sentiment word is semantically meaningful for the given aspect category. To mitigate this problem, we propose a Sentence Constituent-Aware Network (SCAN) for aspect-category sentiment analysis. SCAN contains two graph attention modules and an interactive loss function. The graph attention modules generate representations of the nodes in sentence constituency parse trees for the aspect category detection (ACD) task and the ACSA task, respectively. ACD aims to detect aspect categories discussed in sentences and is a auxiliary task. For a given aspect category, the interactive loss function helps the ACD task to find the nodes which can predict the aspect category but cant predict other aspect categories. The sentiment words in the nodes then are used to predict the sentiment polarity of the aspect category by the ACSA task. The experimental results on five public datasets demonstrate the effectiveness of SCAN.
Aspect-category sentiment analysis (ACSA) aims to predict sentiment polarities of sentences with respect to given aspect categories. To detect the sentiment toward a particular aspect category in a sentence, most previous methods first generate an aspect category-specific sentence representation for the aspect category, then predict the sentiment polarity based on the representation. These methods ignore the fact that the sentiment of an aspect category mentioned in a sentence is an aggregation of the sentiments of the words indicating the aspect category in the sentence, which leads to suboptimal performance. In this paper, we propose a Multi-Instance Multi-Label Learning Network for Aspect-Category sentiment analysis (AC-MIMLLN), which treats sentences as bags, words as instances, and the words indicating an aspect category as the key instances of the aspect category. Given a sentence and the aspect categories mentioned in the sentence, AC-MIMLLN first predicts the sentiments of the instances, then finds the key instances for the aspect categories, finally obtains the sentiments of the sentence toward the aspect categories by aggregating the key instance sentiments. Experimental results on three public datasets demonstrate the effectiveness of AC-MIMLLN.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
130 - Lu Xu , Lidong Bing , Wei Lu 2020
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا