Do you want to publish a course? Click here

Interventional Aspect-Based Sentiment Analysis

98   0   0.0 ( 0 )
 Added by Zhen Bi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.



rate research

Read More

130 - Lu Xu , Lidong Bing , Wei Lu 2020
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.
Existing works for aspect-based sentiment analysis (ABSA) have adopted a unified approach, which allows the interactive relations among subtasks. However, we observe that these methods tend to predict polarities based on the literal meaning of aspect and opinion terms and mainly consider relations implicitly among subtasks at the word level. In addition, identifying multiple aspect-opinion pairs with their polarities is much more challenging. Therefore, a comprehensive understanding of contextual information w.r.t. the aspect and opinion are further required in ABSA. In this paper, we propose Deep Contextualized Relation-Aware Network (DCRAN), which allows interactive relations among subtasks with deep contextual information based on two modules (i.e., Aspect and Opinion Propagation and Explicit Self-Supervised Strategies). Especially, we design novel self-supervised strategies for ABSA, which have strengths in dealing with multiple aspects. Experimental results show that DCRAN significantly outperforms previous state-of-the-art methods by large margins on three widely used benchmarks.
Aspect-based sentiment analysis (ABSA) aims to predict fine-grained sentiments of comments with respect to given aspect terms or categories. In previous ABSA methods, the importance of aspect has been realized and verified. Most existing LSTM-based models take aspect into account via the attention mechanism, where the attention weights are calculated after the context is modeled in the form of contextual vectors. However, aspect-related information may be already discarded and aspect-irrelevant information may be retained in classic LSTM cells in the context modeling process, which can be improved to generate more effective context representations. This paper proposes a novel variant of LSTM, termed as aspect-aware LSTM (AA-LSTM), which incorporates aspect information into LSTM cells in the context modeling stage before the attention mechanism. Therefore, our AA-LSTM can dynamically produce aspect-aware contextual representations. We experiment with several representative LSTM-based models by replacing the classic LSTM cells with the AA-LSTM cells. Experimental results on SemEval-2014 Datasets demonstrate the effectiveness of AA-LSTM.
Aspect-based sentiment analysis (ABSA) aims at analyzing the sentiment of a given aspect in a sentence. Recently, neural network-based methods have achieved promising results in existing ABSA datasets. However, these datasets tend to degenerate to sentence-level sentiment analysis because most sentences contain only one aspect or multiple aspects with the same sentiment polarity. To facilitate the research of ABSA, NLPCC 2020 Shared Task 2 releases a new large-scale Multi-Aspect Multi-Sentiment (MAMS) dataset. In the MAMS dataset, each sentence contains at least two different aspects with different sentiment polarities, which makes ABSA more complex and challenging. To address the challenging dataset, we re-formalize ABSA as a problem of multi-aspect sentiment analysis, and propose a novel Transformer-based Multi-aspect Modeling scheme (TMM), which can capture potential relations between multiple aspects and simultaneously detect the sentiment of all aspects in a sentence. Experiment results on the MAMS dataset show that our method achieves noticeable improvements compared with strong baselines such as BERT and RoBERTa, and finally ranks the 2nd in NLPCC 2020 Shared Task 2 Evaluation.
Aspect based sentiment analysis (ABSA) aims to identify the sentiment polarity towards the given aspect in a sentence, while previous models typically exploit an aspect-independent (weakly associative) encoder for sentence representation generation. In this paper, we propose a novel Aspect-Guided Deep Transition model, named AGDT, which utilizes the given aspect to guide the sentence encoding from scratch with the specially-designed deep transition architecture. Furthermore, an aspect-oriented objective is designed to enforce AGDT to reconstruct the given aspect with the generated sentence representation. In doing so, our AGDT can accurately generate aspect-specific sentence representation, and thus conduct more accurate sentiment predictions. Experimental results on multiple SemEval datasets demonstrate the effectiveness of our proposed approach, which significantly outperforms the best reported results with the same setting.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا