Do you want to publish a course? Click here

Magnetoelastic anisotropy in Heusler-type Mn$_{2-delta}$CoGa$_{1+delta}$ films

303   0   0.0 ( 0 )
 Added by Takahide Kubota
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Perpendicular magnetization is essential for high-density memory application using magnetic materials. High-spin polarization of conduction electrons is also required for realizing large electric signals from spin-dependent transport phenomena. Heusler alloy is a well-known material class showing the half-metallic electronic structure. However, its cubic lattice nature favors in-plane magnetization and thus minimizes the perpendicular magnetic anisotropy (PMA), in general. This study focuses on an inverse-type Heusler alloy, Mn$_{2-delta}$CoGa$_{1+delta}$ (MCG) with a small off-stoichiometry ($delta$) , which is expected to be a half-metallic material. We observed relatively large uniaxial magnetocrystalline anisotropy energy ($K_mathrm{u}$) of the order of 10$^5$ J/m$^3$ at room temperature in MCG films with a small tetragonal distortion of a few percent. A positive correlation was confirmed between the $c/a$ ratio of lattice constants and $K_mathrm{u}$. Imaging of magnetic domains using Kerr microscopy clearly demonstrated a change in the domain patterns along with $K_mathrm{u}$. X-ray magnetic circular dichroism (XMCD) was employed using synchrotron radiation soft x-ray beam to get insight into the origin for PMA. Negligible angular variation of orbital magnetic moment ($Delta m_mathrm{orb}$) evaluated using the XMCD spectra suggested a minor role of the so-called Brunos term to $K_mathrm{u}$. Our first principles calculation reasonably explained the small $Delta m_mathrm{orb}$ and the positive correlation between the $c/a$ ratio and $K_mathrm{u}$. The origin of the magnetocrystalline anisotropy was discussed based on the second-order perturbation theory in terms of the spin-orbit coupling, claiming that the mixing of the occupied $uparrow$- and the unoccupied $downarrow$-spin states is responsible for the PMA of the MCG films.



rate research

Read More

The static and dynamic magnetic properties of tetragonally distorted Mn--Ga based alloys were investigated. Static properties are determined in magnetic fields up to 6.5~T using SQUID magnetometry. For the pure Mn$_{1.6}$Ga film, the saturation magnetisation is 0.36~MA/m and the coercivity is 0.29~T. Partial substitution of Mn by Co results in Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$. The saturation magnetisation of those films drops to 0.2~MA/m and the coercivity is increased to 1~T. Time-resolved magneto-optical Kerr effect (TR-MOKE) is used to probe the high-frequency dynamics of Mn--Ga. The ferromagnetic resonance frequency extrapolated to zero-field is found to be 125~GHz with a Gilbert damping, $alpha$, of 0.019. The anisotropy field is determined from both SQUID and TR-MOKE to be 4.5~T, corresponding to an effective anisotropy density of 0.81~MJ/m$^3$. Given the large anisotropy field of the Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ film, pulsed magnetic fields up to 60~T are used to determine the field strength required to saturate the film in the plane. For this, the extraordinary Hall effect was employed as a probe of the local magnetisation. By integrating the reconstructed in--plane magnetisation curve, the effective anisotropy energy density for Mn$_{2.6}$Co$_{0.3}$Ga$_{1.1}$ is determined to be 1.23~MJ/m$^3$.
Perpendicularly magnetized films showing small saturation magnetization, $M_mathrm{s}$, are essential for spin-transfer-torque writing type magnetoresistive random access memories, STT-MRAMs. An intermetallic compound, {(Mn-Cr)AlGe} of the Cu$_2$Sb-type crystal structure was investigated, in this study, as a material showing the low $M_mathrm{s}$ ($sim 300$ kA/m) and high-perpendicular magnetic anisotropy, $K_mathrm{u}$. The layer thickness dependence of $K_mathrm{u}$ and effects of Mg-insertion layers at top and bottom (Mn-Cr)AlGe$|$MgO interfaces were studied in film samples fabricated onto thermally oxidized silicon substrates to realize high-$K_mathrm{u}$ in the thickness range of a few nanometer. Optimum Mg-insertion thicknesses were 1.4 and 3.0 nm for the bottom and the top interfaces, respectively, which were relatively thick compared to results in similar insertion effect investigations on magnetic tunnel junctions reported in previous studies. The cross-sectional transmission electron microscope images revealed that the Mg-insertion layers acted as barriers to interdiffusion of Al-atoms as well as oxidization from the MgO layers. The values of $K_mathrm{u}$ were about $7 times 10^5$ and $2 times 10^5$ J/m$^3$ at room temperature for 5 and 3 nm-thick (Mn-Cr)AlGe films, respectively, with the optimum Mg-insertion thicknesses. The $K_mathrm{u}$ at a few nanometer thicknesses is comparable or higher than those reported in perpendicularly magnetized CoFeB films which are conventionally used in MRAMs, while the $M_mathrm{s}$ value is one third or less smaller than those of the CoFeB films. The developed (Mn-Cr)AlGe films are promising from the viewpoint of not only the magnetic properties, but also the compatibility to the silicon process in the film fabrication.
We present the synthesis of D0$_{22}$ Mn$_{3 - delta}$Ga ($delta$ = 0, 1) Heusler alloys by Spark Plasma Sintering method. The single phase Mn$_3$Ga (T$_mathrm{c}$ $simeq$ 780 K) is synthesized, while Mn$_2$Ga (T$_mathrm{c}$ $simeq$ 710 K) is found to coexist with a near-stoichiometric room temperature paramagnetic Mn$_9$Ga$_5$~($approx$ 15 %) phase due to its lower formation energy, as confirmed from our density functional theory (DFT) calculations. The alloys show hard magnetic behavior with large room temperature spontaneous magnetization m$_s$(80 kOe) = 1.63 (0.83) $mu_mathrm{B}$/f.u. and coercivity H$_mathrm{c}$ = 4.28 (3.35) kOe for Mn$_3$Ga (Mn$_2$Ga). The magnetic properties are further investigated till T$_mathrm{c}$ and the H$_mathrm{c}$ (T) analysis by Stoner-Wohlfarth model shows the nucleation mechanism for the magnetization reversal. The experimental results are well supported by DFT calculations, which reveal that the ground state of D0$_{22}$ Mn$_2$Ga is achieved by the removal of Mn-atoms from full Heusler Mn$_3$Ga structure in accordance with half Heusler alloy picture.
An approach to adjusting the conduction band population for tuning the magnetic and magnetocaloric response of EuO1-{delta} thin films through control of oxygen vacancies ({delta} = 0, 0.025, and 0.09) is presented. The films each showed a paramagnetic to ferromagnetic transition around 65 K, with an additional magnetic ordering transition at higher temperatures in the oxygen deficient samples. All transitions are observed to be of second order. A maximum magnetic entropy change of 6.4 J/kg K over a field change of 2 T with a refrigerant capacity of 223 J/kg was found in the sample with {delta} = 0, and in all cases the refrigerant capacities of the thin films under study were found to exceed that reported for bulk EuO. Adjusting the oxygen content was shown to produce table-like magnetocaloric effects, desirable for ideal Ericsson-cycle magnetic refrigeration. These films are thus excellent candidates for small-scale magnetic cooling technology in the liquid nitrogen temperature range.
Polycrystalline Heusler compounds Ni2Mn0.75Cu0.25Ga0.84Al0.16 with a martensitic transition between ferromagnetic phases and Ni2Mn0.70Cu0.30Ga0.84Al0.16 with a magnetostructural transformation were investigated by magnetization and thermal measurements, both as a function of temperature and magnetic field. The compound Ni2Mn0.75Cu0.25Ga0.84Al0.16 presents a large magnetocaloric effect among magnetically aligned structures and its causes are explored. In addition, Ni2Mn0.70Cu0.30Ga0.84Al0.16 shows very high, although irreversible, entropy and adiabatic temperature change at room temperature under a magnetic field change 0-1 T. Improved refrigerant capacity is also a highlight of the 30% Cu material when compared to similar Ni2MnGa-based alloys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا