Do you want to publish a course? Click here

Magnetocaloric effect in Ni2(Mn,Cu)Ga0.84Al0.16 Heusler alloys

80   0   0.0 ( 0 )
 Added by Alberto Mendonca
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polycrystalline Heusler compounds Ni2Mn0.75Cu0.25Ga0.84Al0.16 with a martensitic transition between ferromagnetic phases and Ni2Mn0.70Cu0.30Ga0.84Al0.16 with a magnetostructural transformation were investigated by magnetization and thermal measurements, both as a function of temperature and magnetic field. The compound Ni2Mn0.75Cu0.25Ga0.84Al0.16 presents a large magnetocaloric effect among magnetically aligned structures and its causes are explored. In addition, Ni2Mn0.70Cu0.30Ga0.84Al0.16 shows very high, although irreversible, entropy and adiabatic temperature change at room temperature under a magnetic field change 0-1 T. Improved refrigerant capacity is also a highlight of the 30% Cu material when compared to similar Ni2MnGa-based alloys.



rate research

Read More

We report a systematic study on the magneto-structural transition in Mn-rich Fe-doped Mn-Fe-Ni-Sn(Sb/In) Heusler alloys by keeping the total valence electron concentration (e/a ratio) fixed. The martensitic transition (MT) temperature is found to shift by following a proportional relationship with the e/a ratio of the magnetic elements alone. The magnetic entropy change across MT for a selected sample (Mn49FeNi40Sn9In) has been estimated from three different measurement methods (isofield magnetization (M) vs temperature (T), isothermal M vs field (H) and heat capacity (HC) vs T). We observed that though the peak value of magnetic entropy change changes with the measurement methods, the broadened shape of the magnetic entropy change vs T curves and the corresponding cooling power (~140 Jkg-1) remains invariant. The equivalent adiabatic temperature change ~ -2.6 K has been obtained from indirect measurements of temperature change. Moreover, an exchange bias field ~ 783 Oe at 5 K and a magnetoresistance of -30% are also obtained in one of these materials.
The magnetocaloric effect (MCE) in paramagnetic materials has been widely used for attaining very low temperatures by applying a magnetic field isothermally and removing it adiabatically. The effect can be exploited also for room temperature refrigeration by using recently discovered giant MCE materials. In this letter, we report on an inverse situation in Ni-Mn-Sn alloys, whereby applying a magnetic field adiabatically, rather than removing it, causes the sample to cool. This has been known to occur in some intermetallic compounds, for which a moderate entropy increase can be induced when a field is applied, thus giving rise to an inverse magnetocaloric effect. However, the entropy change found for some ferromagnetic Ni-Mn-Sn alloys is just as large as that reported for giant MCE materials, but with opposite sign. The giant inverse MCE has its origin in a martensitic phase transformation that modifies the magnetic exchange interactions due to the change in the lattice parameters.
Ni$_{50}$Mn$_{34}$In$_{16}$ undergoes a martensitic transformation around 250 K and exhibits a field induced reverse martensitic transformation and substantial magnetocaloric effects. We substitute small amounts Ga for In, which are isoelectronic, to carry these technically important properties to close to room temperature by shifting the martensitic transformation temperature.
Inelastic and elastic neutron scattering have been used to study a single crystal of the Ni$_{54}$Mn$_{23}$Al$_{23}$ Heusler alloy over a broad temperature range. The paper reports the first experimental determination of the low-lying phonon dispersion curves for this alloy system. We find that the frequencies of the TA$_2$ modes are relatively low. This branch exhibits an anomaly (dip) at a wave number $xi_{0} ={1/3}approx 0.33$, which softens with decreasing temperature. Associated with this anomalous dip at $xi_{0}$, an elastic central peak scattering is also present. We have also observed satellites due to the magnetic ordering.
Ni-Mn-In magnetic shape-memory Heusler alloys exhibit generally a large thermal hysteresis at their first-order martensitic phase transition which hinder a technological application in magnetic refrigeration. By optimizing the Cu content in Ni$_2$Cu$_x$Mn$_{1.4-x}$In$_{0.6}$, we obtained a thermal hysteresis of the martensitic phase transition in Ni$_{2}$Cu$_{0.2}$Mn$_{1.2}$In$_{0.6}$ of only 6 K. We can explain this very small hysteresis by an almost perfect habit plane at the interface of martensite and austenite phases. Application of hydrostatic pressure does not reduce the hysteresis further, but shifts the martensitic transition close to room temperature. The isothermal entropy change does not depend on warming or cooling protocols and is pressure independent. Experiments in pulsed-magnetic fields on Ni$_{2}$Cu$_{0.2}$Mn$_{1.2}$In$_{0.6}$ find a reversible magnetocaloric effect with a maximum adiabatic temperature change of -13 K.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا