Do you want to publish a course? Click here

Scalar leptoquark pair production at the LHC: precision predictions in the era of flavour anomalies

98   0   0.0 ( 0 )
 Added by Benjamin Fuks
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We comprehensively examine precision predictions for scalar leptoquark pair production at the LHC. In particular, we investigate the impact of lepton $t$-channel exchange diagrams that are potentially relevant in the context of leptoquark scenarios providing an explanation for the flavour anomalies. We also evaluate the corresponding total rates at the next-to-leading order in QCD. Moreover, we complement this calculation with the resummation of soft-gluon radiation at the next-to-next-to-leading logarithmic accuracy, hence providing the most precise predictions for leptoquark pair production at the LHC to date. Relying on a variety of benchmark scenarios favoured by the anomalies, our results exhibit an interesting interplay between the $t$-channel diagram contributions, the flavour texture satisfied by the leptoquark Yukawa couplings, the leptoquark masses and their representations under the Standard Model gauge group, as well as the chosen set of parton densities used for the numerical evaluations. The net effect on a cross section turns out to be very non-generic and ranges up to about 60% with respect to the usual next-to-leading-order predictions in QCD (i.e. without any $t$-channel contribution) for some scenarios considered. Dedicated calculations are thus required for any individual leptoquark model that could be considered in a collider analysis in order to assess the size of the studied corrections. In order to facilitate such calculations we provide dedicated public numerical packages.



rate research

Read More

We revisit scalar leptoquark pair-production at hadron colliders and significantly improve the level of precision of the cross section calculations. Apart from QCD contributions, we include lepton t-channel exchange diagrams that turn out to be relevant in the light of the recent B-anomalies. We evaluate all contributions at next-to-leading-order accuracy in QCD and resum, in the threshold regime, soft-gluon radiation at next-to-next-to-leading logarithmic accuracy. Our predictions consist hence in the most precise leptoquark cross section calculations available to date, and are necessary for the best exploitation of leptoquark searches at the LHC.
Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC. The purpose of this paper is to point out that a model-independent search strategy covering all possible leptoquarks is possible and has not yet been fully exploited. To be systematic we organize the possible leptoquark final states according to a leptoquark matrix with entries corresponding to nine experimentally distinguishable leptoquark decays: any of {light-jet, b-jet, top} with any of {neutrino, $e/mu$, $tau$}. The 9 possibilities can be explored in a largely model-independent fashion with pair-production of leptoquarks at the LHC. We review the status of experimental searches for the 9 components of the leptoquark matrix, pointing out which 3 have not been adequately covered. We plead that experimenters publish bounds on leptoquark cross sections as functions of mass for as wide a range of leptoquark masses as possible. Such bounds are essential for reliable recasts to general leptoquark models. To demonstrate the utility of the leptoquark matrix approach we collect and summarize searches with the same final states as leptoquark pair production and use them to derive bounds on a complete set of Minimal Leptoquark models which span all possible flavor and gauge representations for scalar and vector leptoquarks.
94 - J. Fiaschi , M. Klasen 2020
We present a calculation of higgsino and gaugino pair production at the LHC at next-to-next-to-leading logarithmic (NNLL) accuracy, matched to approximate next-to-next-to-leading order (aNNLO) QCD corrections. We briefly review the formalism for the resummation of large threshold logarithms and highlight the analytical results required at aNNLO+NNLO accuracy. Our numerical results are found to depend on the mass and nature of the produced charginos and neutralinos. The differential and total cross sections for light higgsinos, which like sleptons are produced mostly at small x and in the s-channel, are found to be again moderately increased with respect to our previous results. The differential and total cross sections for gauginos are, however, not increased any more due to the fact that gauginos, like squarks, are now constrained by ATLAS and CMS to be heavier than about 1 TeV, so that also t- and u-channels play an important role. The valence quarks probed at large x then also induce substantially different cross sections for positively and negatively charged gauginos. The higgsino and gaugino cross sections are both further stabilized at aNNLO+NNLL with respect to the variation of renormalization and factorization scales. We also now take mixing in the squark sector into account and study the dependence of the total cross sections on the squark and gluino masses as well as the trilinear coupling controlling the mixing in particular in the sbottom sector.
We present the full NLO SUSY-QCD corrections to the pair production of neutralinos and charginos at the LHC in association with a jet and their matching to parton-shower programs in the framework of the POWHEG-BOX package. The code we have developed provides a SUSY Les Houches Accord interface for setting electroweak and supersymmetric input parameters. Decays of the neutralinos and charginos and parton-shower effects can be simulated with multi-purpose programs such as PYTHIA. The capabilities of the code are illustrated by phenomenological results for a parameter point in the framework of pMSSM10, compatible with present experimental limits on supersymmetry. We find that NLO-QCD corrections as well as parton-shower effects are of primary importance for the appropriate description of jet distributions.
Based on a number of features from proton-proton collisions taken during Run 1 data taking period at the LHC, a boson with a mass around the Electro-Weak scale was postulated such that a significant fraction of its decays would comprise the Standard Model (SM) Higgs boson and an additional scalar, $S$. One of the phenomenological implications of a simplified model, where $S$ is treated a SM Higgs boson, is the anomalous production of high transverse momentum leptons. A combined study of Run 1 and Run 2 data is indicative of very significant discrepancies between the data and SM Monte Carlos in a variety of final states involving multiple leptons with and without $b$-quarks. These discrepancies appear in corners of the phase-space where different SM processes dominate, indicating that the potential mismodeling of a particular SM process is unlikely to explain them. Systematic uncertainties from the prediction of SM processes evaluated with currently available tools seem unable to explain away these discrepancies. The internal consistency of these anomalies and their interpretation in the framework of the original hypothesis is quantified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا