Do you want to publish a course? Click here

The Leptoquark Hunters Guide: Pair Production

363   0   0.0 ( 0 )
 Added by Yi-Ming Zhong
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Leptoquarks occur in many new physics scenarios and could be the next big discovery at the LHC. The purpose of this paper is to point out that a model-independent search strategy covering all possible leptoquarks is possible and has not yet been fully exploited. To be systematic we organize the possible leptoquark final states according to a leptoquark matrix with entries corresponding to nine experimentally distinguishable leptoquark decays: any of {light-jet, b-jet, top} with any of {neutrino, $e/mu$, $tau$}. The 9 possibilities can be explored in a largely model-independent fashion with pair-production of leptoquarks at the LHC. We review the status of experimental searches for the 9 components of the leptoquark matrix, pointing out which 3 have not been adequately covered. We plead that experimenters publish bounds on leptoquark cross sections as functions of mass for as wide a range of leptoquark masses as possible. Such bounds are essential for reliable recasts to general leptoquark models. To demonstrate the utility of the leptoquark matrix approach we collect and summarize searches with the same final states as leptoquark pair production and use them to derive bounds on a complete set of Minimal Leptoquark models which span all possible flavor and gauge representations for scalar and vector leptoquarks.



rate research

Read More

Leptoquarks have recently received much attention especially because they may provide an explanation to the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies in rare $B$ meson decays. In a previous paper we proposed a systematic search strategy for all possible leptoquark flavors by focusing on leptoquark pair production. In this paper, we extend this strategy to large (order unity) leptoquark couplings which offer new search opportunities: single leptoquark production and $t$-channel leptoquark exchange with dilepton final states. We discuss the unique features of the different search channels and show that they cover complementary regions of parameter space. We collect and update all currently available bounds for the different flavor final states from LHC searches and from atomic parity violation measurements. As an application of our analysis, we find that current limits do not exclude the leptoquark explanation of the $B$ physics anomalies but that the high luminosity run of the LHC will reach the most interesting parameter space.
We revisit scalar leptoquark pair-production at hadron colliders and significantly improve the level of precision of the cross section calculations. Apart from QCD contributions, we include lepton t-channel exchange diagrams that turn out to be relevant in the light of the recent B-anomalies. We evaluate all contributions at next-to-leading-order accuracy in QCD and resum, in the threshold regime, soft-gluon radiation at next-to-next-to-leading logarithmic accuracy. Our predictions consist hence in the most precise leptoquark cross section calculations available to date, and are necessary for the best exploitation of leptoquark searches at the LHC.
We comprehensively examine precision predictions for scalar leptoquark pair production at the LHC. In particular, we investigate the impact of lepton $t$-channel exchange diagrams that are potentially relevant in the context of leptoquark scenarios providing an explanation for the flavour anomalies. We also evaluate the corresponding total rates at the next-to-leading order in QCD. Moreover, we complement this calculation with the resummation of soft-gluon radiation at the next-to-next-to-leading logarithmic accuracy, hence providing the most precise predictions for leptoquark pair production at the LHC to date. Relying on a variety of benchmark scenarios favoured by the anomalies, our results exhibit an interesting interplay between the $t$-channel diagram contributions, the flavour texture satisfied by the leptoquark Yukawa couplings, the leptoquark masses and their representations under the Standard Model gauge group, as well as the chosen set of parton densities used for the numerical evaluations. The net effect on a cross section turns out to be very non-generic and ranges up to about 60% with respect to the usual next-to-leading-order predictions in QCD (i.e. without any $t$-channel contribution) for some scenarios considered. Dedicated calculations are thus required for any individual leptoquark model that could be considered in a collider analysis in order to assess the size of the studied corrections. In order to facilitate such calculations we provide dedicated public numerical packages.
72 - B. C. Allanach 2019
We estimate the future sensitivity of the high luminosity (HL-) and high energy (HE-) modes of the Large Hadron Collider (LHC) and of a 100 TeV future circular collider (FCC-hh) to leptoquark (LQ) pair production in the muon-plus-jet decay mode of each LQ. Such LQs are motivated by the fact they provide an explanation for the neutral current $B-$anomalies. For each future collider, Standard Model (SM) backgrounds and detector effects are simulated. From these, sensitivities of each collider are found. Our measures of sensitivity are based upon a Run II ATLAS search, which we also use for validation. We illustrate with a narrow scalar ($S_3$) LQ and find that, in our channel, the HL-LHC has exclusion sensitivity to LQ masses up to 1.8 TeV, the HE-LHC up to 4.8 TeV and the FCC-hh up to 13.5 TeV.
In supersymmetric models with radiatively-driven naturalness and light higgsinos, the top squarks may lie in the 0.5- 3TeV range and thus only a fraction of natural parameter space is accessible to LHC searches. We outline the range of top squark and lightest SUSY particle masses preferred by electroweak naturalness in the standard parameter space plane. We note that the branching fraction for b-> sgamma decay favors top squarks much heavier than 500 GeV. Such a range of top-squark mass values is in contrast to previous expectations where m(stop)<500 GeV had been considered natural. In radiative natural SUSY, top squarks decay roughly equally via t1-> bW1 and Z_{1,2} where W1 and Z_{1,2} are higgsino-like electroweak-inos. Thus, top squark pair production should yield all of tbar{t}+eslt, tbar{b}+eslt, bbar{t}+eslt and bbar{b}+eslt signatures at comparable rates. We propose that future LHC top squark searches take place within a semi-simplified model which corresponds more closely to expectations from theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا