No Arabic abstract
The purpose of this study is to introduce software technologies and models and artificial intelligence algorithms to improve the weaknesses of CBT (Cognitive Behavior Therapy) method in psychotherapy. The presentation method for this purpose is the implementation of psychometric experiments in which the hidden human variables are inferred from the answers of tests. In this report, we describe the various models of Item Response Theory and measure the hidden components of ability and complementary parameters of the reality of the individuals situation. Psychometrics, selecting the appropriate model and estimating its parameters have been introduced and implemented using R language developed libraries. Due to the high flexibility of the Multi variant Rasch mixture Model, machine learning has been applied to this method of data modeling. BIC and CML were used to determine the number of hidden classes of the model and its parameters respectively, to obtain Measurement Invariance. The sensitivity of items to hidden attributes varies between groups (DIF), so methods for detecting it are introduced. This simulation is done based on the Verbal Aggression Dataset. We also analyze and compile a reference model based on this certificate based on the discovered patterns of software engineering. Other achievements of this study are related to providing a solution to explain the reengineering problems of the mind, by preparing an identity card for the clients by an ontology. Finally, applying the developed knowledge in the form of system thinking and recommended patterns in software engineering during the treatment process is pointed out.
A meaningful and deep understanding of the human aspects of software engineering (SE) requires psychological constructs to be considered. Psychology theory can facilitate the systematic and sound development as well as the adoption of instruments (e.g., psychological tests, questionnaires) to assess these constructs. In particular, to ensure high quality, the psychometric properties of instruments need evaluation. In this paper, we provide an introduction to psychometric theory for the evaluation of measurement instruments for SE researchers. We present guidelines that enable using existing instruments and developing new ones adequately. We conducted a comprehensive review of the psychology literature framed by the Standards for Educational and Psychological Testing. We detail activities used when operationalizing new psychological constructs, such as item pooling, item review, pilot testing, item analysis, factor analysis, statistical property of items, reliability, validity, and fairness in testing and test bias. We provide an openly available example of a psychometric evaluation based on our guideline. We hope to encourage a culture change in SE research towards the adoption of established methods from psychology. To improve the quality of behavioral research in SE, studies focusing on introducing, validating, and then using psychometric instruments need to be more common.
Researchers are increasingly recognizing the importance of human aspects in software development and since qualitative methods are used to, in-depth, explore human behavior, we believe that studies using such techniques will become more common. Existing qualitative software engineering guidelines do not cover the full breadth of qualitative methods and knowledge on using them found in the social sciences. The aim of this study was thus to extend the software engineering research communitys current body of knowledge regarding available qualitative methods and provide recommendations and guidelines for their use. With the support of an epistemological argument and a literature review, we suggest that future research would benefit from (1) utilizing a broader set of research methods, (2) more strongly emphasizing reflexivity, and (3) employing qualitative guidelines and quality criteria. We present an overview of three qualitative methods commonly used in social sciences but rarely seen in software engineering research, namely interpretative phenomenological analysis, narrative analysis, and discourse analysis. Furthermore, we discuss the meaning of reflexivity in relation to the software engineering context and suggest means of fostering it. Our paper will help software engineering researchers better select and then guide the application of a broader set of qualitative research methods.
The main problems of Software Engineering appear as a result of incompatibilities. For example, the quality of organization of the production process depends on correspondence with existent resources and on a common understanding of project goals by all team members. Software design is another example. Its successfulness rides on the architectures conformity with a projects concepts. This is a point of great nicety. All elements should create a single space of interaction. And if the laws of such a space are imperfect, missequencing comes and the concept of a software system fails. We must do our best for this not to happen. To that end, having a subtle perception of systems structures is essential. Such knowledge can be based only on a fresh approach to the logical law.
Quantum software plays a critical role in exploiting the full potential of quantum computing systems. As a result, it is drawing increasing attention recently. This paper defines the term quantum software engineering and introduces a quantum software life cycle. Based on these, the paper provides a comprehensive survey of the current state of the art in the field and presents the challenges and opportunities that we face. The survey summarizes the technology available in the various phases of the quantum software life cycle, including quantum software requirements analysis, design, implementation, test, and maintenance. It also covers the crucial issue of quantum software reuse.
One of the more prominent trends within Industry 4.0 is the drive to employ Robotic Process Automation (RPA), especially as one of the elements of the Lean approach. The full implementation of RPA is riddled with challenges relating both to the reality of everyday business operations, from SMEs to SSCs and beyond, and the social effects of the changing job market. To successfully address these points there is a need to develop a solution that would adjust to the existing business operations and at the same time lower the negative social impact of the automation process. To achieve these goals we propose a hybrid, human-centered approach to the development of software robots. This design and implementation method combines the Living Lab approach with empowerment through participatory design to kick-start the co-development and co-maintenance of hybrid software robots which, supported by variety of AI methods and tools, including interactive and collaborative ML in the cloud, transform menial job posts into higher-skilled positions, allowing former employees to stay on as robot co-designers and maintainers, i.e. as co-programmers who supervise the machine learning processes with the use of tailored high-level RPA Domain Specific Languages (DSLs) to adjust the functioning of the robots and maintain operational flexibility.