Do you want to publish a course? Click here

Qualitative software engineering research -- reflections and guidelines

94   0   0.0 ( 0 )
 Added by Daniel Graziotin
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Researchers are increasingly recognizing the importance of human aspects in software development and since qualitative methods are used to, in-depth, explore human behavior, we believe that studies using such techniques will become more common. Existing qualitative software engineering guidelines do not cover the full breadth of qualitative methods and knowledge on using them found in the social sciences. The aim of this study was thus to extend the software engineering research communitys current body of knowledge regarding available qualitative methods and provide recommendations and guidelines for their use. With the support of an epistemological argument and a literature review, we suggest that future research would benefit from (1) utilizing a broader set of research methods, (2) more strongly emphasizing reflexivity, and (3) employing qualitative guidelines and quality criteria. We present an overview of three qualitative methods commonly used in social sciences but rarely seen in software engineering research, namely interpretative phenomenological analysis, narrative analysis, and discourse analysis. Furthermore, we discuss the meaning of reflexivity in relation to the software engineering context and suggest means of fostering it. Our paper will help software engineering researchers better select and then guide the application of a broader set of qualitative research methods.



rate research

Read More

Representative sampling appears rare in empirical software engineering research. Not all studies need representative samples, but a general lack of representative sampling undermines a scientific field. This article therefore reports a systematic review of the state of sampling in recent, high-quality software engineering research. The key findings are: (1) random sampling is rare; (2) sophisticated sampling strategies are very rare; (3) sampling, representativeness and randomness often appear misunderstood. These findings suggest that textit{software engineering research has a generalizability crisis}. To address these problems, this paper synthesizes existing knowledge of sampling into a succinct primer and proposes extensive guidelines for improving the conduct, presentation and evaluation of sampling in software engineering research. It is further recommended that while researchers should strive for more representative samples, disparaging non-probability sampling is generally capricious and particularly misguided for predominately qualitative research.
A meaningful and deep understanding of the human aspects of software engineering (SE) requires psychological constructs to be considered. Psychology theory can facilitate the systematic and sound development as well as the adoption of instruments (e.g., psychological tests, questionnaires) to assess these constructs. In particular, to ensure high quality, the psychometric properties of instruments need evaluation. In this paper, we provide an introduction to psychometric theory for the evaluation of measurement instruments for SE researchers. We present guidelines that enable using existing instruments and developing new ones adequately. We conducted a comprehensive review of the psychology literature framed by the Standards for Educational and Psychological Testing. We detail activities used when operationalizing new psychological constructs, such as item pooling, item review, pilot testing, item analysis, factor analysis, statistical property of items, reliability, validity, and fairness in testing and test bias. We provide an openly available example of a psychometric evaluation based on our guideline. We hope to encourage a culture change in SE research towards the adoption of established methods from psychology. To improve the quality of behavioral research in SE, studies focusing on introducing, validating, and then using psychometric instruments need to be more common.
Empirical Standards are natural-language models of a scientific communitys expectations for a specific kind of study (e.g. a questionnaire survey). The ACM SIGSOFT Paper and Peer Review Quality Initiative generated empirical standards for research methods commonly used in software engineering. These living documents, which should be continuously revised to reflect evolving consensus around research best practices, will improve research quality and make peer review more effective, reliable, transparent and fair.
Many science advances have been possible thanks to the use of research software, which has become essential to advancing virtually every Science, Technology, Engineering and Mathematics (STEM) discipline and many non-STEM disciplines including social sciences and humanities. And while much of it is made available under open source licenses, work is needed to develop, support, and sustain it, as underlying systems and software as well as user needs evolve. In addition, the changing landscape of high-performance computing (HPC) platforms, where performance and scaling advances are ever more reliant on software and algorithm improvements as we hit hardware scaling barriers, is causing renewed tension between sustainability of software and its performance. We must do more to highlight the trade-off between performance and sustainability, and to emphasize the need for sustainability given the fact that complex software stacks dont survive without frequent maintenance; made more difficult as a generation of developers of established and heavily-used research software retire. Several HPC forums are doing this, and it has become an active area of funding as well. In response, the authors organized and ran a panel at the SC18 conference. The objectives of the panel were to highlight the importance of sustainability, to illuminate the tension between pure performance and sustainability, and to steer SC community discussion toward understanding and addressing this issue and this tension. The outcome of the discussions, as presented in this paper, can inform choices of advance compute and data infrastructures to positively impact future research software and future research.
Statistics comes in two main flavors: frequentist and Bayesian. For historical and technical reasons, frequentist statistics have traditionally dominated empirical data analysis, and certainly remain prevalent in empirical software engineering. This situation is unfortunate because frequentist statistics suffer from a number of shortcomings---such as lack of flexibility and results that are unintuitive and hard to interpret---that curtail their effectiveness when dealing with the heterogeneous data that is increasingly available for empirical analysis of software engineering practice. In this paper, we pinpoint these shortcomings, and present Bayesian data analysis techniques that provide tangible benefits---as they can provide clearer results that are simultaneously robust and nuanced. After a short, high-level introduction to the basic tools of Bayesian statistics, we present the reanalysis of two empirical studies on the effectiveness of automatically generated tests and the performance of programming languages. By contrasting the original frequentist analyses with our new Bayesian analyses, we demonstrate the concrete advantages of the latter. To conclude we advocate a more prominent role for Bayesian statistical techniques in empirical software engineering research and practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا