Do you want to publish a course? Click here

TL-SDD: A Transfer Learning-Based Method for Surface Defect Detection with Few Samples

188   0   0.0 ( 0 )
 Added by Bin Guo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Surface defect detection plays an increasingly important role in manufacturing industry to guarantee the product quality. Many deep learning methods have been widely used in surface defect detection tasks, and have been proven to perform well in defects classification and location. However, deep learning-based detection methods often require plenty of data for training, which fail to apply to the real industrial scenarios since the distribution of defect categories is often imbalanced. In other words, common defect classes have many samples but rare defect classes have extremely few samples, and it is difficult for these methods to well detect rare defect classes. To solve the imbalanced distribution problem, in this paper we propose TL-SDD: a novel Transfer Learning-based method for Surface Defect Detection. First, we adopt a two-phase training scheme to transfer the knowledge from common defect classes to rare defect classes. Second, we propose a novel Metric-based Surface Defect Detection (M-SDD) model. We design three modules for this model: (1) feature extraction module: containing feature fusion which combines high-level semantic information with low-level structural information. (2) feature reweighting module: transforming examples to a reweighting vector that indicates the importance of features. (3) distance metric module: learning a metric space in which defects are classified by computing distances to representations of each category. Finally, we validate the performance of our proposed method on a real dataset including surface defects of aluminum profiles. Compared to the baseline methods, the performance of our proposed method has improved by up to 11.98% for rare defect classes.



rate research

Read More

Different from static images, videos contain additional temporal and spatial information for better object detection. However, it is costly to obtain a large number of videos with bounding box annotations that are required for supervised deep learning. Although humans can easily learn to recognize new objects by watching only a few video clips, deep learning usually suffers from overfitting. This leads to an important question: how to effectively learn a video object detector from only a few labeled video clips? In this paper, we study the new problem of few-shot learning for video object detection. We first define the few-shot setting and create a new benchmark dataset for few-shot video object detection derived from the widely used ImageNet VID dataset. We employ a transfer-learning framework to effectively train the video object detector on a large number of base-class objects and a few video clips of novel-class objects. By analyzing the results of two methods under this framework (Joint and Freeze) on our designed weak and strong base datasets, we reveal insufficiency and overfitting problems. A simple but effective method, called Thaw, is naturally developed to trade off the two problems and validate our analysis. Extensive experiments on our proposed benchmark datasets with different scenarios demonstrate the effectiveness of our novel analysis in this new few-shot video object detection problem.
Defect detection and classification technology has changed from traditional artificial visual inspection to current intelligent automated inspection, but most of the current defect detection methods are training related detection models based on a data-driven approach, taking into account the difficulty of collecting some sample data in the industrial field. We apply zero-shot learning technology to the industrial field. Aiming at the problem of the existing Latent Feature Guide Attribute Attention (LFGAA) zero-shot image classification network, the output latent attributes and artificially defined attributes are different in the semantic space, which leads to the problem of model performance degradation, proposed an LGFAA network based on semantic feedback, and improved model performance by constructing semantic embedded modules and feedback mechanisms. At the same time, for the common domain shift problem in zero-shot learning, based on the idea of co-training algorithm using the difference information between different views of data to learn from each other, we propose an Ensemble Co-training algorithm, which adaptively reduces the prediction error in image tag embedding from multiple angles. Various experiments conducted on the zero-shot dataset and the cylinder liner dataset in the industrial field provide competitive results.
Detecting complex events in a large video collection crawled from video websites is a challenging task. When applying directly good image-based feature representation, e.g., HOG, SIFT, to videos, we have to face the problem of how to pool multiple frame feature representations into one feature representation. In this paper, we propose a novel learning-based frame pooling method. We formulate the pooling weight learning as an optimization problem and thus our method can automatically learn the best pooling weight configuration for each specific event category. Experimental results conducted on TRECVID MED 2011 reveal that our method outperforms the commonly used average pooling and max pooling strategies on both high-level and low-level 2D image features.
Few-shot learning (FSL) aims to train a strong classifier using limited labeled examples. Many existing works take the meta-learning approach, sampling few-shot tasks in turn and optimizing the few-shot learners performance on classifying the query examples. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with increasing shots (i.e., the number of training examples per class). To resolve these issues, we propose a novel objective to directly train the few-shot learner to perform like a strong classifier. Concretely, we associate each sampled few-shot task with a strong classifier, which is learned with ample labeled examples. The strong classifier has a better generalization ability and we use it to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach in combinations with many representative meta-learning methods. On several benchmark datasets including miniImageNet and tiredImageNet, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can consistently outperform non-meta-learning based ones, even in a many-shot setting, greatly strengthening their applicability.
The usage of electronic devices increases, and becomes predominant in most aspects of life. Surface Mount Technology (SMT) is the most common industrial method for manufacturing electric devices in which electrical components are mounted directly onto the surface of a Printed Circuit Board (PCB). Although the expansion of electronic devices affects our lives in a productive way, failures or defects in the manufacturing procedure of those devices might also be counterproductive and even harmful in some cases. It is therefore desired and sometimes crucial to ensure zero-defect quality in electronic devices and their production. While traditional Image Processing (IP) techniques are not sufficient to produce a complete solution, other promising methods like Deep Learning (DL) might also be challenging for PCB inspection, mainly because such methods require big adequate datasets which are missing, not available or not updated in the rapidly growing field of PCBs. Thus, PCB inspection is conventionally performed manually by human experts. Unsupervised Learning (UL) methods may potentially be suitable for PCB inspection, having learning capabilities on the one hand, while not relying on large datasets on the other. In this paper, we introduce ChangeChip, an automated and integrated change detection system for defect detection in PCBs, from soldering defects to missing or misaligned electronic elements, based on Computer Vision (CV) and UL. We achieve good quality defect detection by applying an unsupervised change detection between images of a golden PCB (reference) and the inspected PCB under various setting. In this work, we also present CD-PCB, a synthesized labeled dataset of 20 pairs of PCB images for evaluation of defect detection algorithms.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا