Do you want to publish a course? Click here

Chaos in the vicinity of a singularity in the Three-Body Problem: The equilateral triangle experiment in the zero angular momentum limit

131   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present numerical simulations for the three-body problem, in which three particles lie at rest at the vertex of a perturbed equilateral triangle. In the unperturbed problem, the three particles fall towards the center of mass of the system to form a three-body collision, or singularity, where the particles overlap in space and time. By perturbing the initial positions of the particles, we are able to study chaos in the vicinity of the singularity. Here we cover the full range in parameter space for binary formation due to three-body interactions of isolated single stars, covering the singular region corresponding to an equilateral triangle and extending to sufficiently deformed triangles that we enter the binary-single scattering regime (i.e., one side of the triangle is very short and the other two are very long). We make phase space plots to study the regular and ergodic subsets of our simulations independently and derive the expected properties of the left-over binaries from three-body binary formation in isotropic cluster environments. We further provide fits to the ergodic subset to characterize the properties of the left-over binaries. We identify the discrepancy between the statistical theory and the simulations to the regular subset of interactions, which exhibit only weak chaos. As we decrease the scale of the perturbations in the initial positions, the phase space becomes entirely dominated by regular interactions, according to our metric for chaos.



rate research

Read More

65 - Takahisa Igata 2021
Eulers three-body problem is the problem of solving for the motion of a particle moving in a Newtonian potential generated by two point sources fixed in space. This system is integrable in the Liouville sense. We consider the Euler problem with the inverse-square potential, which can be seen as a natural generalization of the three-body problem to higher-dimensional Newtonian theory. We identify a family of stable stationary orbits in the generalized Euler problem. These orbits guarantee the existence of stable bound orbits. Applying the Poincare map method to these orbits, we show that stable bound chaotic orbits appear. As a result, we conclude that the generalized Euler problem is nonintegrable.
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that are derived from the Agekyan-Anosova maps and homology radius $R_{mathcal{H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Levy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Levy flight interactions follow a power-law distribution. Levy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Levy flight interactions. We propose a new physically-motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Levy flight interactions. We discuss mass ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.
We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction in to a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.
This paper continues a numerical investigation of orbits evolved in `frozen, time-independent N-body realisations of smooth time-independent density distributions corresponding to both integrable and nonintegrable potentials, allowing for N as large as 300,000. The principal focus is on distinguishing between, and quantifying, the effects of graininess on initial conditions corresponding, in the continuum limit, to regular and chaotic orbits. Ordinary Lyapunov exponents X do not provide a useful diagnostic for distinguishing between regular and chaotic behaviour. Frozen-N orbits corresponding in the continuum limit to both regular and chaotic characteristics have large positive X even though, for large N, the `regular frozen-N orbits closely resemble regular characteristics in the smooth potential. Viewed macroscopically both `regular and `chaotic frozen-N orbits diverge as a power law in time from smooth orbits with the same initial condition. There is, however, an important difference between `regular and `chaotic frozen-N orbits: For regular orbits, the time scale associated with this divergence t_G ~ N^{1/2}t_D, with t_D a characteristic dynamical time; for chaotic orbits t_G ~ (ln N) t_D. At least for N>1000 or so, clear distinctions exist between phase mixing of initially localised orbit ensembles which, in the continuum limit, exhibit regular versus chaotic behaviour. For both regular and chaotic ensembles, finite-N effects are well mimicked, both qualitatively and quantitatively, by energy-conserving white noise with amplitude ~ 1/N. This suggests strongly that earlier investigations of the effects of low amplitude noise on phase space transport in smooth potentials are directly relevant to real physical systems.
65 - C. Beauge , P.M. Cincotta 2019
We present a numerical study of the application of the Shannon entropy technique to the planar restricted three-body problem in the vicinity of first-order interior mean-motion resonances with the perturber. We estimate the diffusion coefficient for a series of initial conditions and compare the results with calculations obtained from the time evolution of the variance in the semimajor-axis and eccentricity plane. Adopting adequate normalization factors, both methods yield comparable results, although much shorter integration times are required for entropy calculations. A second advantage of the use of entropy is that it is possible to obtain reliable results even without the use of ensembles or analysis restricted to surfaces of section or representative planes. This allows for a much more numerically efficient tool that may be incorporated into a working N-body code and applied to numerous dynamical problems in planetary dynamics. Finally, we estimate instability times for a series of initial conditions in the 2/1 and 3/2 mean-motion resonances and compare them with times of escape obtained from directed N-body simulations. We find very good agreement in all cases, not only with respect to average values but also in their dispersion for near-by trajectories
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا