No Arabic abstract
We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction in to a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.
In this paper, we study the chaotic four-body problem in Newtonian gravity. Assuming point particles and total encounter energies $le$ 0, the problem has three possible outcomes. We describe each outcome as a series of discrete transformations in energy space, using the diagrams first presented in Leigh & Geller (2012; see the Appendix). Furthermore, we develop a formalism for calculating probabilities for these outcomes to occur, expressed using the density of escape configurations per unit energy, and based on the Monaghan description originally developed for the three-body problem. We compare this analytic formalism to results from a series of binary-binary encounters with identical point particles, simulated using the texttt{FEWBODY} code. Each of our three encounter outcomes produces a unique velocity distribution for the escaping star(s). Thus, these distributions can potentially be used to constrain the origins of dynamically-formed populations, via a direct comparison between the predicted and observed velocity distributions. Finally, we show that, for encounters that form stable triples, the simulated single star escape velocity distributions are the same as for the three-body problem. This is also the case for the other two encounter outcomes, but only at low virial ratios. This suggests that single and binary stars processed via single-binary and binary-binary encounters in dense star clusters should have a unique velocity distribution relative to the underlying Maxwellian distribution (provided the relaxation time is sufficiently long), which can be calculated analytically.
Eulers three-body problem is the problem of solving for the motion of a particle moving in a Newtonian potential generated by two point sources fixed in space. This system is integrable in the Liouville sense. We consider the Euler problem with the inverse-square potential, which can be seen as a natural generalization of the three-body problem to higher-dimensional Newtonian theory. We identify a family of stable stationary orbits in the generalized Euler problem. These orbits guarantee the existence of stable bound orbits. Applying the Poincare map method to these orbits, we show that stable bound chaotic orbits appear. As a result, we conclude that the generalized Euler problem is nonintegrable.
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that are derived from the Agekyan-Anosova maps and homology radius $R_{mathcal{H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Levy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Levy flight interactions follow a power-law distribution. Levy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Levy flight interactions. We propose a new physically-motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Levy flight interactions. We discuss mass ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.
Continuing work initiated in an earlier publication [Yamada, Tsuchiya, and Asada, Phys. Rev. D 91, 124016 (2015)], we reexamine the linear stability of the triangular solution in the relativistic three-body problem for general masses by the standard linear algebraic analysis. In this paper, we start with the Einstein-Infeld-Hoffman form of equations of motion for $N$-body systems in the uniformly rotating frame. As an extension of the previous work, we consider general perturbations to the equilibrium, i.e. we take account of perturbations orthogonal to the orbital plane, as well as perturbations lying on it. It is found that the orthogonal perturbations depend on each other by the first post-Newtonian (1PN) three-body interactions, though these are independent of the lying ones likewise the Newtonian case. We also show that the orthogonal perturbations do not affect the condition of stability. This is because these always precess with two frequency modes; the same with the orbital frequency and the slightly different one by the 1PN effect. The same condition of stability with the previous one, which is valid even for the general perturbations, is obtained from the lying perturbations.
Continuing work initiated in earlier publications [Ichita, Yamada and Asada, Phys. Rev. D {bf 83}, 084026 (2011); Yamada and Asada, Phys. Rev. D {bf 86}, 124029 (2012)], we examine the post-Newtonian (PN) effects on the stability of the triangular solution in the relativistic three-body problem for general masses. For three finite masses, a condition for stability of the triangular solution is obtained at the first post-Newtonian (1PN) order, and it recovers previous results for the PN restricted three-body problem when one mass goes to zero. The stability regions still exist even at the 1PN order, though the PN triangular configuration for general masses is less stable than the PN restricted three-body case as well as the Newtonian one.