Do you want to publish a course? Click here

Chaos and the continuum limit in the gravitational N-body problem II. Nonintegrable potentials

64   0   0.0 ( 0 )
 Added by Henry E. Kandrup
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper continues a numerical investigation of orbits evolved in `frozen, time-independent N-body realisations of smooth time-independent density distributions corresponding to both integrable and nonintegrable potentials, allowing for N as large as 300,000. The principal focus is on distinguishing between, and quantifying, the effects of graininess on initial conditions corresponding, in the continuum limit, to regular and chaotic orbits. Ordinary Lyapunov exponents X do not provide a useful diagnostic for distinguishing between regular and chaotic behaviour. Frozen-N orbits corresponding in the continuum limit to both regular and chaotic characteristics have large positive X even though, for large N, the `regular frozen-N orbits closely resemble regular characteristics in the smooth potential. Viewed macroscopically both `regular and `chaotic frozen-N orbits diverge as a power law in time from smooth orbits with the same initial condition. There is, however, an important difference between `regular and `chaotic frozen-N orbits: For regular orbits, the time scale associated with this divergence t_G ~ N^{1/2}t_D, with t_D a characteristic dynamical time; for chaotic orbits t_G ~ (ln N) t_D. At least for N>1000 or so, clear distinctions exist between phase mixing of initially localised orbit ensembles which, in the continuum limit, exhibit regular versus chaotic behaviour. For both regular and chaotic ensembles, finite-N effects are well mimicked, both qualitatively and quantitatively, by energy-conserving white noise with amplitude ~ 1/N. This suggests strongly that earlier investigations of the effects of low amplitude noise on phase space transport in smooth potentials are directly relevant to real physical systems.



rate research

Read More

We revisit the r^{o}le of discreteness and chaos in the dynamics of self-gravitating systems by means of $N$-body simulations with active and frozen potentials, starting from spherically symmetric stationary states and considering the orbits of single particles in a frozen $N$-body potential as well as the orbits of the system in the full $6N$-dimensional phase space. We also consider the intermediate case where a test particle moves in the field generated by $N$ non-interacting particles, which in turn move in a static smooth potential. We investigate the dependence on $N$ and on the softening length of the largest Lyapunov exponent both of single particle orbits and of the full $N$-body system. For single orbits we also study the dependence on the angular momentum and on the energy. Our results confirm the expectation that orbital properties of single orbits in finite-$N$ systems approach those of orbits in smooth potentials in the continuum limit $N to infty$ and that the largest Lyapunov exponent of the full $N$-body system does decrease with $N$, for sufficiently large systems with finite softening length. However, single orbits in frozen models and active self-consistent models have different largest Lyapunov exponents and the $N$-dependence of the values in non-trivial, so that the use of frozen $N$-body potentials to gain information on large-$N$ systems or on the continuum limit may be misleading in certain cases.
We present a new symplectic integrator designed for collisional gravitational $N$-body problems which makes use of Kepler solvers. The integrator is also reversible and conserves 9 integrals of motion of the $N$-body problem to machine precision. The integrator is second order, but the order can easily be increased by the method of citeauthor{yos90}. We use fixed time step in all tests studied in this paper to ensure preservation of symplecticity. We study small $N$ collisional problems and perform comparisons with typically used integrators. In particular, we find comparable or better performance when compared to the 4th order Hermite method and much better performance than adaptive time step symplectic integrators introduced previously. We find better performance compared to SAKURA, a non-symplectic, non-time-reversible integrator based on a different two-body decomposition of the $N$-body problem. The integrator is a promising tool in collisional gravitational dynamics.
We study chaos and Levy flights in the general gravitational three-body problem. We introduce new metrics to characterize the time evolution and final lifetime distributions, namely Scramble Density $mathcal{S}$ and the LF index $mathcal{L}$, that are derived from the Agekyan-Anosova maps and homology radius $R_{mathcal{H}}$. Based on these metrics, we develop detailed procedures to isolate the ergodic interactions and Levy flight interactions. This enables us to study the three-body lifetime distribution in more detail by decomposing it into the individual distributions from the different kinds of interactions. We observe that ergodic interactions follow an exponential decay distribution similar to that of radioactive decay. Meanwhile, Levy flight interactions follow a power-law distribution. Levy flights in fact dominate the tail of the general three-body lifetime distribution, providing conclusive evidence for the speculated connection between power-law tails and Levy flight interactions. We propose a new physically-motivated model for the lifetime distribution of three-body systems and discuss how it can be used to extract information about the underlying ergodic and Levy flight interactions. We discuss mass ejection probabilities in three-body systems in the ergodic limit and compare it to previous ergodic formalisms. We introduce a novel mechanism for a three-body relaxation process and discuss its relevance in general three-body systems.
131 - Paul Dieterle , Ariel Amir 2021
Scientists have observed and studied diffusive waves in contexts as disparate as population genetics and cell signaling. Often, these waves are propagated by discrete entities or agents, such as individual cells in the case of cell signaling. For a broad class of diffusive waves, we characterize the transition between the collective propagation of diffusive waves -- in which the wave speed is well-described by continuum theory -- and the propagation of diffusive waves by individual agents. We show that this transition depends heavily on the dimensionality of the system in which the wave propagates and that disordered systems yield dynamics largely consistent with lattice systems. In some system dimensionalities, the intuition that closely packed sources more accurately mimic a continuum can be grossly violated.
This paper examines discreteness effects in nearly collisionless N-body systems of charged particles interacting via an unscreened r^-2 force, allowing for bulk potentials admitting both regular and chaotic orbits. Both for ensembles and individual orbits, as N increases there is a smooth convergence towards a continuum limit. Discreteness effects are well modeled by Gaussian white noise with relaxation time t_R = const * (N/log L)t_D, with L the Coulomb logarithm and t_D the dynamical time scale. Discreteness effects accelerate emittance growth for initially localised clumps. However, even allowing for discreteness effects one can distinguish between orbits which, in the continuum limit, feel a regular potential, so that emittance grows as a power law in time, and chaotic orbits, where emittance grows exponentially. For sufficiently large N, one can distinguish two different `kinds of chaos. Short range microchaos, associated with close encounters between charges, is a generic feature, yielding large positive Lyapunov exponents X_N which do not decrease with increasing N even if the bulk potential is integrable. Alternatively, there is the possibility of larger scale macrochaos, characterised by smaller Lyapunov exponents X_S, which is present only if the bulk potential is chaotic. Conventional computations of Lyapunov exponents probe X_N, leading to the oxymoronic conclusion that N-body orbits which look nearly regular and have sharply peaked Fourier spectra are `very chaotic. However, the `range of the microchaos, set by the typical interparticle spacing, decreases as N increases, so that, for large N, this microchaos, albeit very strong, is largely irrelevant macroscopically. A more careful numerical analysis allows one to estimate both X_N and X_S.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا