Do you want to publish a course? Click here

The potential of CMS as a high-energy neutrino scattering experiment

144   0   0.0 ( 0 )
 Added by Peter Reimitz
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

With its enormous number of produced neutrinos the LHC is a prime facility to study the behaviour of high-energy neutrinos. In this letter we propose a novel search strategy for identifying neutrino scattering via displaced appearing jets in the high granularity calorimeter (HGCAL) of the CMS endcap in the high luminosity run of the LHC. We demonstrate in a cut-and-count based analysis how the enormous hadronic background can be reduced while keeping most of the neutrino signal. This paper serves as a proof-of-principle study to illustrate the feasibility of the first direct observation of high-energetic neutrinos coming from $W$ decays.



rate research

Read More

130 - T. Adams , P. Batra , L. Bugel 2009
This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes $ u_{mu}+e^- to u_{mu}+ e^-$ and $ u_{mu}+ e^- to u_e + mu^-$. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of $Z u u$ couplings, tree-level exchanges of new particles such as $Z^prime$s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This article reviews these physics opportunities.
Estimates are made of the ultra-high energy neutrino cross sections based on an extrapolation to very small Bjorken x of the logarithmic Froissart dependence in x shown previously to provide an excellent fit to the measured proton structure function F_2^p(x,Q^2) over a broad range of the virtuality Q^2. Expressions are obtained for both the neutral current and the charged current cross sections. Comparison with an extrapolation based on perturbative QCD shows good agreement for energies where both fit data, but our rates are as much as a factor of 10 smaller for neutrino energies above 10^9 GeV, with important implications for experiments searching for extra-galactic neutrinos.
106 - T. Adams , P. Batra , L. Bugel 2009
We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of Beyond the Standard Model physics.
157 - K.Abe , J.Adam , H.Aihara 2014
The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $sin^22theta_{23}$, the octant of $theta_{23}$, and the mass hierarchy, in addition to the measurements of $delta_{CP}$, $sin^2theta_{23}$, and $Delta m^2_{32}$, for various combinations of $ u$-mode and (bar{ u})-mode data-taking. With an exposure of $7.8times10^{21}$~protons-on-target, T2K can achieve 1-$sigma$ resolution of 0.050(0.054) on $sin^2theta_{23}$ and $0.040(0.045)times10^{-3}~rm{eV}^2$ on $Delta m^2_{32}$ for 100%(50%) neutrino beam mode running assuming $sin^2theta_{23}=0.5$ and $Delta m^2_{32} = 2.4times10^{-3}$ eV$^2$. T2K will have sensitivity to the CP-violating phase $delta_{rm{CP}}$ at 90% C.L. or better over a significant range. For example, if $sin^22theta_{23}$ is maximal (i.e $theta_{23}$=$45^circ$) the range is $-115^circ<delta_{rm{CP}}<-60^circ$ for normal hierarchy and $+50^circ<delta_{rm{CP}}<+130^circ$ for inverted hierarchy. When T2K data is combined with data from the NO$ u$A experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero $delta_{CP}$ is substantially increased compared to if each experiment is analyzed alone.
We propose the operation of textbf{LEvEL}, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100~ton-year and 1~ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا