Do you want to publish a course? Click here

Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

103   0   0.0 ( 0 )
 Added by Janet Conrad
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes $ u_{mu}+e^- to u_{mu}+ e^-$ and $ u_{mu}+ e^- to u_e + mu^-$. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of $Z u u$ couplings, tree-level exchanges of new particles such as $Z^prime$s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This article reviews these physics opportunities.

rate research

Read More

87 - T. Adams , P. Batra , L. Bugel 2009
We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of Beyond the Standard Model physics.
With its enormous number of produced neutrinos the LHC is a prime facility to study the behaviour of high-energy neutrinos. In this letter we propose a novel search strategy for identifying neutrino scattering via displaced appearing jets in the high granularity calorimeter (HGCAL) of the CMS endcap in the high luminosity run of the LHC. We demonstrate in a cut-and-count based analysis how the enormous hadronic background can be reduced while keeping most of the neutrino signal. This paper serves as a proof-of-principle study to illustrate the feasibility of the first direct observation of high-energetic neutrinos coming from $W$ decays.
Estimates are made of the ultra-high energy neutrino cross sections based on an extrapolation to very small Bjorken x of the logarithmic Froissart dependence in x shown previously to provide an excellent fit to the measured proton structure function F_2^p(x,Q^2) over a broad range of the virtuality Q^2. Expressions are obtained for both the neutral current and the charged current cross sections. Comparison with an extrapolation based on perturbative QCD shows good agreement for energies where both fit data, but our rates are as much as a factor of 10 smaller for neutrino energies above 10^9 GeV, with important implications for experiments searching for extra-galactic neutrinos.
We do a re-analysis to asses the impact of the results of the Borexino experiment and the recent 2.8 KTy KamLAND data on the solar neutrino oscillation parameters. The current Borexino results are found to have no impact on the allowed solar neutrino parameter space. The new KamLAND data causes a significant reduction of the allowed range of $Delta m^2_{21}$, determining it with an unprecedented precision of 8.3% at 3$sigma$. The precision of $Delta m^2_{21}$ is controlled practically by the KamLAND data alone. Inclusion of new KamLAND results also improves the upper bound on $sin^2theta_{12}$, but the precision of this parameter continues to be controlled by the solar data. The third mixing angle is constrained to be $sin^2theta_{13} < 0.063$ at $3sigma$ from a combined fit to the solar, KamLAND, atmospheric and CHOOZ results. We also address the issue of how much further reduction of allowed range of $Delta m^2_{21}$ and $sin^2theta_{12}$ is possible with increased statistics from KamLAND. We find that there is a sharp reduction of the $3sigma$ ``spread with enhanced statistics till about 10 KTy after which the spread tends to flatten out reaching to less than 4% with 15 KTy data. For $sin^2theta_{12}$ however, the spread is more than 25% even after 20 KTy exposure and assuming $theta_{12} < pi/4$, as dictated by the solar data. We show that with a KamLAND like reactor ``SPMIN experiment at a distance of $sim$ 60 km, the spread of $sin^2theta_{12}$ could be reduced to about 5% at $3sigma$ level while $Delta m_{21}^2$ could be determined to within 4%, with just 3 KTy exposure.
Besides using the laser beam, it is very tempting to directly testify the Bell inequality at high energy experiments where the spin correlation is exactly what the original Bell inequality investigates. In this work, we follow the proposal raised in literature and use the successive decays $J/psitogammaeta_cto LambdabarLambdato ppi^-bar ppi^+$ to testify the Bell inequality. Our goal is twofold, namely, we first make a Monte-Carlo simulation of the processes based on the quantum field theory (QFT). Since the underlying theory is QFT, it implies that we pre-admit the validity of quantum picture. Even though the QFT is true, we need to find how big the database should be, so that we can clearly show deviations of the correlation from the Bell inequality determined by the local hidden variable theory. There have been some critiques on the proposed method, so in the second part, we suggest some improvements which may help to remedy the ambiguities indicated by the critiques. It may be realized at an updated facility of high energy physics, such as BES III.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا