Do you want to publish a course? Click here

QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

101   0   0.0 ( 0 )
 Added by Georgia Karagiorgi
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of Beyond the Standard Model physics.



rate research

Read More

123 - T. Adams , P. Batra , L. Bugel 2009
This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes $ u_{mu}+e^- to u_{mu}+ e^-$ and $ u_{mu}+ e^- to u_e + mu^-$. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of $Z u u$ couplings, tree-level exchanges of new particles such as $Z^prime$s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This article reviews these physics opportunities.
We argue that high-precision lattice QCD is now possible, for the first time, because of a new improved staggered quark discretization. We compare a wide variety of nonperturbative calculations in QCD with experiment, and find agreement to within statistical and systematic errors of 3% or less. We also present a new determination of alpha_msbar(Mz); we obtain 0.121(3). We discuss the implications of this breakthrough for phenomenology and, in particular, for heavy-quark physics.
180 - M.Bishai , M.Diwan , S.Kettell 2013
The first phase of the long-baseline neutrino experiment, LBNE10, will use a broadband, high-energy neutrino beam with a 10-kt liquid argon TPC at 1300 km to study neutrino oscillation. In this paper, we describe potential upgrades to LBNE10 that use Project X to produce high-intensity, low-energy neutrino beams. Simultaneous, high-power operation of 8- and 60-GeV beams with a 200-kt water Cerenkov detector would provide sensitivity to nu_mu to nu_e oscillations at the second oscillation maximum. We find that with ten years of data, it would be possible to measure sin2(2theta_13) with precision comparable to that expected from reactor antineutrino disappearance and to measure the value of the CP phase, delta_CP, with an uncertainty of (5-10) degrees. This document is submitted for inclusion in Snowmass 2013.
With its enormous number of produced neutrinos the LHC is a prime facility to study the behaviour of high-energy neutrinos. In this letter we propose a novel search strategy for identifying neutrino scattering via displaced appearing jets in the high granularity calorimeter (HGCAL) of the CMS endcap in the high luminosity run of the LHC. We demonstrate in a cut-and-count based analysis how the enormous hadronic background can be reduced while keeping most of the neutrino signal. This paper serves as a proof-of-principle study to illustrate the feasibility of the first direct observation of high-energetic neutrinos coming from $W$ decays.
107 - U. K. Yang , T. Adams , A. Alton 2000
We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3(nu)-xF_3(nubar) from CCFR nu_mu-Fe and nubar_mu-Fe different ial cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement of Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictios. The ratio of the F_2 (PMI) values measured in nu_mu and mu scattering is in agreement (within 5%) with the NLO predictions using massive charm production schemes, thus resolving the long-standing discrepancy between the two sets of data. In addition, measurements of F_L (or, equivalently, R) and 2xF_1 are reported in the kinematic region where anomalous nuclear effects in R are observed at HERMES.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا