Do you want to publish a course? Click here

An Autonomous Driving System - Dedicated Vehicle for People with ASD and their Caregivers

98   0   0.0 ( 0 )
 Added by Feng Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Automated driving system - dedicated vehicles (ADS-DVs), specially designed for people with various disabilities, can be beneficial to improve their mobility. However, research related to autonomous vehicles (AVs) for people with cognitive disabilities, especially Autism Spectrum Disorder (ASD) is limited. Thus, in this study, we focused on the challenge that we framed: How might we design an ADS-DV that benefits people with ASD and their caregivers?. In order to address the design challenge, we followed the human-centered design process. First, we conducted user research with caregivers of people with ASD. Second, we identified their user needs, including safety, monitoring and updates, individual preferences, comfort, trust, and reliability. Third, we generated a large number of ideas with brainstorming and affinity diagrams, based on which we proposed an ADS-DV prototype with a mobile application and an interior design. Fourth, we tested both the low-fidelity and high-fidelity prototypes to fix the possible issues. Our preliminary results showed that such an ASD-DV would potentially improve the mobility of those with ASD without worries.



rate research

Read More

A major strategy to prevent the spread of COVID-19 is through the limiting of in-person contacts. However, for the many disabled people who live in the community and require caregivers to assist them with activities of daily living, limiting contacts is impractical or impossible. We seek to determine which interventions can prevent infections among disabled people and their caregivers. To accomplish this, we simulate COVID-19 transmission with a compartmental model on a network. The networks incorporate heterogeneity in the risks of different types of interactions, time-dependent lockdown and reopening measures, and interaction distributions for four different groups (caregivers, disabled people, essential workers, and the general population). Among these groups, we find the probability of becoming infected is highest for caregivers and second highest for disabled people. Our analysis of the network structure illustrates that caregivers have the largest modal eigenvector centrality among the four groups. We find that two interventions -- contact-limiting by all groups and mask-wearing by disabled people and caregivers -- particularly reduce cases among disabled people and caregivers. We also test which group most effectively spreads COVID-19 by seeding infections in a subset of each group and then comparing the total number of infections as the disease spreads. We find that caregivers are the most effective spreaders of COVID-19. We then test where limited vaccine doses could be used most effectively and we find that vaccinating caregivers better protects disabled people than vaccinating the general population, essential workers, or the disabled population itself. Our results highlight the potential effectiveness of mask-wearing, contact-limiting throughout society, and strategic vaccination for limiting the exposure of disabled people and their caregivers to COVID-19.
Previous studies have suggested that being imitated by an adult is an effective intervention with children with autism and developmental delay. The purpose of this study is to investigate if an imitation game with a robot can arise interest from children and constitute an effective tool to be used in clinical activities. In this paper, we describe the design of our nursery rhyme imitation game, its implementation based on RGB image pose recognition and the preliminary tests we performed.
82 - A. Koegel , C. Furet , T. Suzuki 2021
The Thinking Wave is an ongoing development of visualization concepts showing the real-time effort and confidence of semi-autonomous vehicle (AV) systems. Offering drivers access to this information can inform their decision making, and enable them to handle the situation accordingly and takeover when necessary. Two different visualizations have been designed, Concept one, Tidal, demonstrates the AV systems effort through intensified activity of a simple graphic which fluctuates in speed and frequency. Concept two, Tandem, displays the effort of the AV system as well as the handling dynamic and shared responsibility between the driver and the vehicle system. Working collaboratively with mobility research teams at the University of Tokyo, we are prototyping and refining the Thinking Wave and its embodiments as we work towards building a testable version integrated into a driving simulator. The development of the thinking wave aims to calibrate trust by increasing the drivers knowledge and understanding of vehicle handling capacity. By enabling transparent communication of the AV systems capacity, we hope to empower AV-skeptic drivers and keep over-trusting drivers on alert in the case of an emergency takeover situation, in order to create a safer autonomous driving experience.
With the advent of off-the-shelf intelligent home products and broader internet adoption, researchers increasingly explore smart computing applications that provide easier access to health and wellness resources. AI-based systems like chatbots have the potential to provide services that could provide mental health support. However, existing therapy chatbots are often retrieval-based, requiring users to respond with a constrained set of answers, which may not be appropriate given that such pre-determined inquiries may not reflect each patients unique circumstances. Generative-based approaches, such as the OpenAI GPT models, could allow for more dynamic conversations in therapy chatbot contexts than previous approaches. To investigate the generative-based models potential in therapy chatbot contexts, we built a chatbot using the GPT-2 model. We fine-tuned it with 306 therapy session transcripts between family caregivers of individuals with dementia and therapists conducting Problem Solving Therapy. We then evaluated the models pre-trained and the fine-tuned model in terms of basic qualities using three meta-information measurements: the proportion of non-word outputs, the length of response, and sentiment components. Results showed that: (1) the fine-tuned model created more non-word outputs than the pre-trained model; (2) the fine-tuned model generated outputs whose length was more similar to that of the therapists compared to the pre-trained model; (3) both the pre-trained model and fine-tuned model were likely to generate more negative and fewer positive outputs than the therapists. We discuss potential reasons for the problem, the implications, and solutions for developing therapy chatbots and call for investigations of the AI-based system application.
With the outlook of improving communication and social abilities of people with ASD, we propose to extend the paradigm of robot-based imitation games to ASD teenagers. In this paper, we present an interaction scenario adapted to ASD teenagers, propose a computational architecture using the latest machine learning algorithm Openpose for human pose detection, and present the results of our basic testing of the scenario with human caregivers. These results are preliminary due to the number of session (1) and participants (4). They include a technical assessment of the performance of Openpose, as well as a preliminary user study to confirm our game scenario could elicit the expected response from subjects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا