Do you want to publish a course? Click here

Neural Network Repair with Reachability Analysis

83   0   0.0 ( 0 )
 Added by Xiaodong Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Safety is a critical concern for the next generation of autonomy that is likely to rely heavily on deep neural networks for perception and control. Formally verifying the safety and robustness of well-trained DNNs and learning-enabled systems under attacks, model uncertainties, and sensing errors is essential for safe autonomy. This research proposes a framework to repair unsafe DNNs in safety-critical systems with reachability analysis. The repair process is inspired by adversarial training which has demonstrated high effectiveness in improving the safety and robustness of DNNs. Different from traditional adversarial training approaches where adversarial examples are utilized from random attacks and may not be representative of all unsafe behaviors, our repair process uses reachability analysis to compute the exact unsafe regions and identify sufficiently representative examples to enhance the efficacy and efficiency of the adversarial training. The performance of our framework is evaluated on two types of benchmarks without safe models as references. One is a DNN controller for aircraft collision avoidance with access to training data. The other is a rocket lander where our framework can be seamlessly integrated with the well-known deep deterministic policy gradient (DDPG) reinforcement learning algorithm. The experimental results show that our framework can successfully repair all instances on multiple safety specifications with negligible performance degradation. In addition, to increase the computational and memory efficiency of the reachability analysis algorithm, we propose a depth-first-search algorithm that combines an existing exact analysis method with an over-approximation approach based on a new set representation. Experimental results show that our method achieves a five-fold improvement in runtime and a two-fold improvement in memory usage compared to exact analysis.



rate research

Read More

Neural networks have recently become popular for a wide variety of uses, but have seen limited application in safety-critical domains such as robotics near and around humans. This is because it remains an open challenge to train a neural network to obey safety constraints. Most existing safety-related methods only seek to verify that already-trained networks obey constraints, requiring alternating training and verification. Instead, this work proposes a constrained method to simultaneously train and verify a feedforward neural network with rectified linear unit (ReLU) nonlinearities. Constraints are enforced by computing the networks output-space reachable set and ensuring that it does not intersect with unsafe sets; training is achieved by formulating a novel collision-check loss function between the reachable set and unsafe portions of the output space. The reachable and unsafe sets are represented by constrained zonotopes, a convex polytope representation that enables differentiable collision checking. The proposed method is demonstrated successfully on a network with one nonlinearity layer and approximately 50 parameters.
Verifying correctness of deep neural networks (DNNs) is challenging. We study a generic reachability problem for feed-forward DNNs which, for a given set of inputs to the network and a Lipschitz-continuous function over its outputs, computes the lower and upper bound on the function values. Because the network and the function are Lipschitz continuous, all values in the interval between the lower and upper bound are reachable. We show how to obtain the safety verification problem, the output range analysis problem and a robustness measure by instantiating the reachability problem. We present a novel algorithm based on adaptive nested optimisation to solve the reachability problem. The technique has been implemented and evaluated on a range of DNNs, demonstrating its efficiency, scalability and ability to handle a broader class of networks than state-of-the-art verification approaches.
We present NNrepair, a constraint-based technique for repairing neural network classifiers. The technique aims to fix the logic of the network at an intermediate layer or at the last layer. NNrepair first uses fault localization to find potentially faulty network parameters (such as the weights) and then performs repair using constraint solving to apply small modifications to the parameters to remedy the defects. We present novel strategies to enable precise yet efficient repair such as inferring correctness specifications to act as oracles for intermediate layer repair, and generation of experts for each class. We demonstrate the technique in the context of three different scenarios: (1) Improving the overall accuracy of a model, (2) Fixing security vulnerabilities caused by poisoning of training data and (3) Improving the robustness of the network against adversarial attacks. Our evaluation on MNIST and CIFAR-10 models shows that NNrepair can improve the accuracy by 45.56 percentage points on poisoned data and 10.40 percentage points on adversarial data. NNrepair also provides small improvement in the overall accuracy of models, without requiring new data or re-training.
Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This paper develops methods for estimating the reachable set and verifying safety properties of dynamical systems under control of neural network-based controllers that may be implemented in embedded software. The neural network controllers we consider are feedforward neural networks called multilayer perceptrons (MLP) with general activation functions. As such feedforward networks are memoryless, they may be abstractly represented as mathematical functions, and the reachability analysis of the network amounts to range (image) estimation of this function provided a set of inputs. By discretizing the input set of the MLP into a finite number of hyper-rectangular cells, our approach develops a linear programming (LP) based algorithm for over-approximating the output set of the MLP with its input set as a union of hyper-rectangular cells. Combining the over-approximation for the output set of an MLP based controller and reachable set computation routines for ordinary difference/differential equation (ODE) models, an algorithm is developed to estimate the reachable set of the closed-loop system. Finally, safety verification for neural network control systems can be performed by checking the existence of intersections between the estimated reachable set and unsafe regions. The approach is implemented in a computational software prototype and evaluated on numerical examples.
Deep convolutional neural networks have been widely employed as an effective technique to handle complex and practical problems. However, one of the fundamental problems is the lack of formal methods to analyze their behavior. To address this challenge, we propose an approach to compute the exact reachable sets of a network given an input domain, where the reachable set is represented by the face lattice structure. Besides the computation of reachable sets, our approach is also capable of backtracking to the input domain given an output reachable set. Therefore, a full analysis of a networks behavior can be realized. In addition, an approach for fast analysis is also introduced, which conducts fast computation of reachable sets by considering selected sensitive neurons in each layer. The exact pixel-level reachability analysis method is evaluated on a CNN for the CIFAR10 dataset and compared to related works. The fast analysis method is evaluated over a CNN CIFAR10 dataset and VGG16 architecture for the ImageNet dataset.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا