Do you want to publish a course? Click here

PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic Condition Prediction

133   0   0.0 ( 0 )
 Added by Tiange Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Accurate forecasting of traffic conditions is critical for improving safety, stability, and efficiency of a city transportation system. In reality, it is challenging to produce accurate traffic forecasts due to the complex and dynamic spatiotemporal correlations. Most existing works only consider partial characteristics and features of traffic data, and result in unsatisfactory performances on modeling and forecasting. In this paper, we propose a periodic spatial-temporal deep neural network (PSTN) with three pivotal modules to improve the forecasting performance of traffic conditions through a novel integration of three types of information. First, the historical traffic information is folded and fed into a module consisting of a graph convolutional network and a temporal convolutional network. Second, the recent traffic information together with the historical output passes through the second module consisting of a graph convolutional network and a gated recurrent unit framework. Finally, a multi-layer perceptron is applied to process the auxiliary road attributes and output the final predictions. Experimental results on two publicly accessible real-world urban traffic data sets show that the proposed PSTN outperforms the state-of-the-art benchmarks by significant margins for short-term traffic conditions forecasting



rate research

Read More

As a crucial component in intelligent transportation systems, traffic flow prediction has recently attracted widespread research interest in the field of artificial intelligence (AI) with the increasing availability of massive traffic mobility data. Its key challenge lies in how to integrate diverse factors (such as temporal rules and spatial dependencies) to infer the evolution trend of traffic flow. To address this problem, we propose a unified neural network called Attentive Traffic Flow Machine (ATFM), which can effectively learn the spatial-temporal feature representations of traffic flow with an attention mechanism. In particular, our ATFM is composed of two progressive Convolutional Long Short-Term Memory (ConvLSTM cite{xingjian2015convolutional}) units connected with a convolutional layer. Specifically, the first ConvLSTM unit takes normal traffic flow features as input and generates a hidden state at each time-step, which is further fed into the connected convolutional layer for spatial attention map inference. The second ConvLSTM unit aims at learning the dynamic spatial-temporal representations from the attentionally weighted traffic flow features. Further, we develop two deep learning frameworks based on ATFM to predict citywide short-term/long-term traffic flow by adaptively incorporating the sequential and periodic data as well as other external influences. Extensive experiments on two standard benchmarks well demonstrate the superiority of the proposed method for traffic flow prediction. Moreover, to verify the generalization of our method, we also apply the customized framework to forecast the passenger pickup/dropoff demands in traffic prediction and show its superior performance. Our code and data are available at {color{blue}url{https://github.com/liulingbo918/ATFM}}.
Flow prediction (e.g., crowd flow, traffic flow) with features of spatial-temporal is increasingly investigated in AI research field. It is very challenging due to the complicated spatial dependencies between different locations and dynamic temporal dependencies among different time intervals. Although measurements of both dependencies are employed, existing methods suffer from the following two problems. First, the temporal dependencies are measured either uniformly or bias against long-term dependencies, which overlooks the distinctive impacts of short-term and long-term temporal dependencies. Second, the existing methods capture spatial and temporal dependencies independently, which wrongly assumes that the correlations between these dependencies are weak and ignores the complicated mutual influences between them. To address these issues, we propose a Spatial-Temporal Self-Attention Network (ST-SAN). As the path-length of attending long-term dependency is shorter in the self-attention mechanism, the vanishing of long-term temporal dependencies is prevented. In addition, since our model relies solely on attention mechanisms, the spatial and temporal dependencies can be simultaneously measured. Experimental results on real-world data demonstrate that, in comparison with state-of-the-art methods, our model reduces the root mean square errors by 9% in inflow prediction and 4% in outflow prediction on Taxi-NYC data, which is very significant compared to the previous improvement.
Off-the-shelf machine learning algorithms for prediction such as regularized logistic regression cannot exploit the information of time-varying features without previously using an aggregation procedure of such sequential data. However, recurrent neural networks provide an alternative approach by which time-varying features can be readily used for modeling. This paper assesses the performance of neural networks for churn modeling using recency, frequency, and monetary value data from a financial services provider. Results show that RFM variables in combination with LSTM neural networks have larger top-decile lift and expected maximum profit metrics than regularized logistic regression models with commonly-used demographic variables. Moreover, we show that using the fitted probabilities from the LSTM as feature in the logistic regression increases the out-of-sample performance of the latter by 25 percent compared to a model with only static features.
Taxi demand prediction has recently attracted increasing research interest due to its huge potential application in large-scale intelligent transportation systems. However, most of the previous methods only considered the taxi demand prediction in origin regions, but neglected the modeling of the specific situation of the destination passengers. We believe it is suboptimal to preallocate the taxi into each region based solely on the taxi origin demand. In this paper, we present a challenging and worth-exploring task, called taxi origin-destination demand prediction, which aims at predicting the taxi demand between all region pairs in a future time interval. Its main challenges come from how to effectively capture the diverse contextual information to learn the demand patterns. We address this problem with a novel Contextualized Spatial-Temporal Network (CSTN), which consists of three components for the modeling of local spatial context (LSC), temporal evolution context (TEC) and global correlation context (GCC) respectively. Firstly, an LSC module utilizes two convolution neural networks to learn the local spatial dependencies of taxi demand respectively from the origin view and the destination view. Secondly, a TEC module incorporates both the local spatial features of taxi demand and the meteorological information to a Convolutional Long Short-term Memory Network (ConvLSTM) for the analysis of taxi demand evolution. Finally, a GCC module is applied to model the correlation between all regions by computing a global correlation feature as a weighted sum of all regional features, with the weights being calculated as the similarity between the corresponding region pairs. Extensive experiments and evaluations on a large-scale dataset well demonstrate the superiority of our CSTN over other compared methods for taxi origin-destination demand prediction.
Traffic forecasting has emerged as a core component of intelligent transportation systems. However, timely accurate traffic forecasting, especially long-term forecasting, still remains an open challenge due to the highly nonlinear and dynamic spatial-temporal dependencies of traffic flows. In this paper, we propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) that leverages dynamical directed spatial dependencies and long-range temporal dependencies to improve the accuracy of long-term traffic forecasting. Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies with self-attention mechanism to capture realtime traffic conditions as well as the directionality of traffic flows. Furthermore, different spatial dependency patterns can be jointly modeled with multi-heads attention mechanism to consider diverse relationships related to different factors (e.g. similarity, connectivity and covariance). On the other hand, the temporal transformer is utilized to model long-range bidirectional temporal dependencies across multiple time steps. Finally, they are composed as a block to jointly model the spatial-temporal dependencies for accurate traffic prediction. Compared to existing works, the proposed model enables fast and scalable training over a long range spatial-temporal dependencies. Experiment results demonstrate that the proposed model achieves competitive results compared with the state-of-the-arts, especially forecasting long-term traffic flows on real-world PeMS-Bay and PeMSD7(M) datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا