No Arabic abstract
Networks are landmarks of many complex phenomena where interweaving interactions between different agents transform simple local rule-sets into nonlinear emergent behaviors. While some recent studies unveil associations between the network structure and the underlying dynamical process, identifying stochastic nonlinear dynamical processes continues to be an outstanding problem. Here we develop a simple data-driven framework based on operator-theoretic techniques to identify and control stochastic nonlinear dynamics taking place over large-scale networks. The proposed approach requires no prior knowledge of the network structure and identifies the underlying dynamics solely using a collection of two-step snapshots of the states. This data-driven system identification is achieved by using the Koopman operator to find a low dimensional representation of the dynamical patterns that evolve linearly. Further, we use the global linear Koopman model to solve critical control problems by applying to model predictive control (MPC)--typically, a challenging proposition when applied to large networks. We show that our proposed approach tackles this by converting the original nonlinear programming into a more tractable optimization problem that is both convex and with far fewer variables.
Convenient access to observational data enables us to learn causal effects without randomized experiments. This research direction draws increasing attention in research areas such as economics, healthcare, and education. For example, we can study how a medicine (the treatment) causally affects the health condition (the outcome) of a patient using existing electronic health records. To validate causal effects learned from observational data, we have to control confounding bias -- the influence of variables which causally influence both the treatment and the outcome. Existing work along this line overwhelmingly relies on the unconfoundedness assumption that there do not exist unobserved confounders. However, this assumption is untestable and can even be untenable. In fact, an important fact ignored by the majority of previous work is that observational data can come with network information that can be utilized to infer hidden confounders. For example, in an observational study of the individual-level treatment effect of a medicine, instead of randomized experiments, the medicine is often assigned to each individual based on a series of factors. Some of the factors (e.g., socioeconomic status) can be challenging to measure and therefore become hidden confounders. Fortunately, the socioeconomic status of an individual can be reflected by whom she is connected in social networks. With this fact in mind, we aim to exploit the network information to recognize patterns of hidden confounders which would further allow us to learn valid individual causal effects from observational data. In this work, we propose a novel causal inference framework, the network deconfounder, which learns representations to unravel patterns of hidden confounders from the network information. Empirically, we perform extensive experiments to validate the effectiveness of the network deconfounder on various datasets.
In this paper we consider the epidemic competition between two generic diffusion processes, where each competing side is represented by a different state of a stochastic process. For this setting, we present the Generalized Largest Reduction in Infectious Edges (gLRIE) dynamic resource allocation strategy to advantage the preferred state against the other. Motivated by social epidemics, we apply this method to a generic continuous-time SIS-like diffusion model where we allow for: i) arbitrary node transition rate functions that describe the dynamics of propagation depending on the network state, and ii) competition between the healthy (positive) and infected (negative) states, which are both diffusive at the same time, yet mutually exclusive on each node. Finally we use simulations to compare empirically the proposed gLRIE against competitive approaches from literature.
In this paper, we analyze dynamic switching networks, wherein the networks switch arbitrarily among a set of topologies. For this class of dynamic networks, we derive an epidemic threshold, considering the SIS epidemic model. First, an epidemic probabilistic model is developed assuming independence between states of nodes. We identify the conditions under which the epidemic dies out by linearizing the underlying dynamical system and analyzing its asymptotic stability around the origin. The concept of joint spectral radius is then used to derive the epidemic threshold, which is later validated using several networks (Watts-Strogatz, Barabasi-Albert, MIT reality mining graphs, Regular, and Gilbert). A simplified version of the epidemic threshold is proposed for undirected networks. Moreover, in the case of static networks, the derived epidemic threshold is shown to match conventional analytical results. Then, analytical results for the epidemic threshold of dynamic networksare proved to be applicable to periodic networks. For dynamic regular networks, we demonstrate that the epidemic threshold is identical to the epidemic threshold for static regular networks. An upper bound for the epidemic spread probability in dynamic Gilbert networks is also derived and verified using simulation.
We consider online similarity prediction problems over networked data. We begin by relating this task to the more standard class prediction problem, showing that, given an arbitrary algorithm for class prediction, we can construct an algorithm for similarity prediction with nearly the same mistake bound, and vice versa. After noticing that this general construction is computationally infeasible, we target our study to {em feasible} similarity prediction algorithms on networked data. We initially assume that the network structure is {em known} to the learner. Here we observe that Matrix Winnow cite{w07} has a near-optimal mistake guarantee, at the price of cubic prediction time per round. This motivates our effort for an efficient implementation of a Perceptron algorithm with a weaker mistake guarantee but with only poly-logarithmic prediction time. Our focus then turns to the challenging case of networks whose structure is initially {em unknown} to the learner. In this novel setting, where the network structure is only incrementally revealed, we obtain a mistake-bounded algorithm with a quadratic prediction time per round.
This paper proposes a cyber-physical cooperative mitigation framework to enhance power systems resilience under extreme events, e.g., earthquakes and hurricanes. Extreme events can simultaneously damage the physical-layer electric power infrastructure and the cyber-layer communication facilities. Microgrid (MG) has been widely recognised as an effective physical-layer response to such events, however, the mitigation strategy in the cyber lay is yet to be fully investigated. Therefore, this paper proposes a resilience-oriented centralised-to-decentralised framework to maintain the power supply of critical loads such as hospitals, data centers, etc., under extreme events. For the resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency regional communication when centralised base station being compromised. Owing to the limited reliable bandwidth that reserved as a backup, the inevitable delays are dynamically minimised and used to guide the design of a discrete-time distributed control algorithm to maintain post-event power supply. The effectiveness of the cooperative cyber-physical mitigation framework is demonstrated through extensive simulations in MATLAB/Simulink.