Do you want to publish a course? Click here

Online Similarity Prediction of Networked Data from Known and Unknown Graphs

115   0   0.0 ( 0 )
 Added by Mark Herbster
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

We consider online similarity prediction problems over networked data. We begin by relating this task to the more standard class prediction problem, showing that, given an arbitrary algorithm for class prediction, we can construct an algorithm for similarity prediction with nearly the same mistake bound, and vice versa. After noticing that this general construction is computationally infeasible, we target our study to {em feasible} similarity prediction algorithms on networked data. We initially assume that the network structure is {em known} to the learner. Here we observe that Matrix Winnow cite{w07} has a near-optimal mistake guarantee, at the price of cubic prediction time per round. This motivates our effort for an efficient implementation of a Perceptron algorithm with a weaker mistake guarantee but with only poly-logarithmic prediction time. Our focus then turns to the challenging case of networks whose structure is initially {em unknown} to the learner. In this novel setting, where the network structure is only incrementally revealed, we obtain a mistake-bounded algorithm with a quadratic prediction time per round.



rate research

Read More

Predictive analytics over mobility data are of great importance since they can assist an analyst to predict events, such as collisions, encounters, traffic jams, etc. A typical example of such analytics is future location prediction, where the goal is to predict the future location of a moving object,given a look-ahead time. What is even more challenging is being able to accurately predict collective behavioural patterns of movement, such as co-movement patterns. In this paper, we provide an accurate solution to the problem of Online Prediction of Co-movement Patterns. In more detail, we split the original problem into two sub-problems, namely Future Location Prediction and Evolving Cluster Detection. Furthermore, in order to be able to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure, which facilitates us to match the predicted clusters with the actual ones. Finally, the accuracy of our solution is demonstrated experimentally over a real dataset from the maritime domain.
In many important machine learning applications, the training distribution used to learn a probabilistic classifier differs from the testing distribution on which the classifier will be used to make predictions. Traditional methods correct the distribution shift by reweighting the training data with the ratio of the density between test and training data. In many applications training takes place without prior knowledge of the testing distribution on which the algorithm will be applied in the future. Recently, methods have been proposed to address the shift by learning causal structure, but those methods rely on the diversity of multiple training data to a good performance, and have complexity limitations in high dimensions. In this paper, we propose a novel Deep Global Balancing Regression (DGBR) algorithm to jointly optimize a deep auto-encoder model for feature selection and a global balancing model for stable prediction across unknown environments. The global balancing model constructs balancing weights that facilitate estimating of partial effects of features (holding fixed all other features), a problem that is challenging in high dimensions, and thus helps to identify stable, causal relationships between features and outcomes. The deep auto-encoder model is designed to reduce the dimensionality of the feature space, thus making global balancing easier. We show, both theoretically and with empirical experiments, that our algorithm can make stable predictions across unknown environments. Our experiments on both synthetic and real world datasets demonstrate that our DGBR algorithm outperforms the state-of-the-art methods for stable prediction across unknown environments.
For many data mining and machine learning tasks, the quality of a similarity measure is the key for their performance. To automatically find a good similarity measure from datasets, metric learning and similarity learning are proposed and studied extensively. Metric learning will learn a Mahalanobis distance based on positive semi-definite (PSD) matrix, to measure the distances between objectives, while similarity learning aims to directly learn a similarity function without PSD constraint so that it is more attractive. Most of the existing similarity learning algorithms are online similarity learning method, since online learning is more scalable than offline learning. However, most existing online similarity learning algorithms learn a full matrix with d 2 parameters, where d is the dimension of the instances. This is clearly inefficient for high dimensional tasks due to its high memory and computational complexity. To solve this issue, we introduce several Sparse Online Relative Similarity (SORS) learning algorithms, which learn a sparse model during the learning process, so that the memory and computational cost can be significantly reduced. We theoretically analyze the proposed algorithms, and evaluate them on some real-world high dimensional datasets. Encouraging empirical results demonstrate the advantages of our approach in terms of efficiency and efficacy.
139 - Tian Xu , Ziniu Li , Yang Yu 2021
This paper is dedicated to designing provably efficient adversarial imitation learning (AIL) algorithms that directly optimize policies from expert demonstrations. Firstly, we develop a transition-aware AIL algorithm named TAIL with an expert sample complexity of $tilde{O}(H^{3/2} |S|/varepsilon)$ under the known transition setting, where $H$ is the planning horizon, $|S|$ is the state space size and $varepsilon$ is desired policy value gap. This improves upon the previous best bound of $tilde{O}(H^2 |S| / varepsilon^2)$ for AIL methods and matches the lower bound of $tilde{Omega} (H^{3/2} |S|/varepsilon)$ in [Rajaraman et al., 2021] up to a logarithmic factor. The key ingredient of TAIL is a fine-grained estimator for expert state-action distribution, which explicitly utilizes the transition function information. Secondly, considering practical settings where the transition functions are usually unknown but environment interaction is allowed, we accordingly develop a model-based transition-aware AIL algorithm named MB-TAIL. In particular, MB-TAIL builds an empirical transition model by interacting with the environment and performs imitation under the recovered empirical model. The interaction complexity of MB-TAIL is $tilde{O} (H^3 |S|^2 |A| / varepsilon^2)$, which improves the best known result of $tilde{O} (H^4 |S|^2 |A| / varepsilon^2)$ in [Shani et al., 2021]. Finally, our theoretical results are supported by numerical evaluation and detailed analysis on two challenging MDPs.
210 - Bingcong Li , Tianyi Chen , 2018
This paper deals with bandit online learning problems involving feedback of unknown delay that can emerge in multi-armed bandit (MAB) and bandit convex optimization (BCO) settings. MAB and BCO require only values of the objective function involved that become available through feedback, and are used to estimate the gradient appearing in the corresponding iterative algorithms. Since the challenging case of feedback with emph{unknown} delays prevents one from constructing the sought gradient estimates, existing MAB and BCO algorithms become intractable. For such challenging setups, delayed exploration, exploitation, and exponential (DEXP3) iterations, along with delayed bandit gradient descent (DBGD) iterations are developed for MAB and BCO, respectively. Leveraging a unified analysis framework, it is established that the regret of DEXP3 and DBGD are ${cal O}big( sqrt{Kbar{d}(T+D)} big)$ and ${cal O}big( sqrt{K(T+D)} big)$, respectively, where $bar{d}$ is the maximum delay and $D$ denotes the delay accumulated over $T$ slots. Numerical tests using both synthetic and real data validate the performance of DEXP3 and DBGD.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا