Do you want to publish a course? Click here

A Resilience-Oriented Centralised-to-Decentralised Framework for Networked Microgrids Management

63   0   0.0 ( 0 )
 Added by Pudong Ge
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper proposes a cyber-physical cooperative mitigation framework to enhance power systems resilience under extreme events, e.g., earthquakes and hurricanes. Extreme events can simultaneously damage the physical-layer electric power infrastructure and the cyber-layer communication facilities. Microgrid (MG) has been widely recognised as an effective physical-layer response to such events, however, the mitigation strategy in the cyber lay is yet to be fully investigated. Therefore, this paper proposes a resilience-oriented centralised-to-decentralised framework to maintain the power supply of critical loads such as hospitals, data centers, etc., under extreme events. For the resilient control, controller-to-controller (C2C) wireless network is utilised to form the emergency regional communication when centralised base station being compromised. Owing to the limited reliable bandwidth that reserved as a backup, the inevitable delays are dynamically minimised and used to guide the design of a discrete-time distributed control algorithm to maintain post-event power supply. The effectiveness of the cooperative cyber-physical mitigation framework is demonstrated through extensive simulations in MATLAB/Simulink.



rate research

Read More

The goal of this paper is the experimental validation of a gray-box equivalent modeling approach applied to microgrids. The main objective of the equivalent modeling is to represent the dynamic response of a microgrid with a simplified model. The main contribution of this work is the experimental validation of a two-step process, composed by the definition of a nonlinear equivalent model with operational constraints, adapted to the microgrid environment, and the identification procedure used to define the model parameters. Once the parameters are identified, the simplified model is ready to reproduce the microgrid behavior to voltage and frequency variations, in terms of active and reactive power exchanges at the point of common coupling. To validate the proposed approach, a set of experimental tests have been carried out on a real LV microgrid considering different configurations, including both grid-connected and islanded operating conditions. Results show the effectiveness of the proposed technique and the applicability of the model to perform dynamic simulations.
To accommodate the advent of microgrids (MG) managing distributed energy resources (DER) in distribution systems, an interactive two-stage joint retail electricity market mechanism is proposed to provide an effective platform for these prosumers to proactively join in retail transactions. Day-ahead stochastic energy trading between the distribution system operator (DSO) and MGs is conducted in the first stage of a centralized retail market, where a chance-constrained uncertainty distribution locational marginal price (CC-UDLMP) containing the cost of uncertainty precautions is used to settle transactions. In the second stage, a novel intra-day peer-to-peer-based (P2P) flexibility transaction pattern is implemented between MGs in local flexibility markets under the regulation of DSO to eliminate power imbalances caused by rolling-based estimates whilst considering systematic operations. A fully distributed iterative algorithm is presented to find the equilibrium solution of this two-stage sequential game framework. Moreover, in order to enhance the versatility of this algorithm, an improved Lp-box alternating direction methods of multipliers (ADMM) algorithm is used to efficiently resolve the first-stage stochastic economic dispatch problem with a mixed-integer second-order cone structure. It is verified that the proposed market mechanism can effectively improve the overall market efficiency under uncertainties.
Hybrid-electric propulsion systems powered by clean energy derived from renewable sources offer a promising approach to decarbonise the worlds transportation systems. Effective energy management systems are critical for such systems to achieve optimised operational performance. However, developing an intelligent energy management system for applications such as ships operating in a highly stochastic environment and requiring concurrent control over multiple power sources presents challenges. This article proposes an intelligent energy management framework for hybrid-electric propulsion systems using deep reinforcement learning. In the proposed framework, a Twin-Delayed Deep Deterministic Policy Gradient agent is trained using an extensive volume of historical load profiles to generate a generic energy management strategy. The strategy, i.e. the core of the energy management system, can concurrently control multiple power sources in continuous state and action spaces. The proposed framework is applied to a coastal ferry model with multiple fuel cell clusters and a battery, achieving near-optimal cost performance when applied to novel future voyages.
This paper considers the multi-agent reinforcement learning (MARL) problem for a networked (peer-to-peer) system in the presence of Byzantine agents. We build on an existing distributed $Q$-learning algorithm, and allow certain agents in the network to behave in an arbitrary and adversarial manner (as captured by the Byzantine attack model). Under the proposed algorithm, if the network topology is $(2F+1)$-robust and up to $F$ Byzantine agents exist in the neighborhood of each regular agent, we establish the almost sure convergence of all regular agents value functions to the neighborhood of the optimal value function of all regular agents. For each state, if the optimal $Q$-values of all regular agents corresponding to different actions are sufficiently separated, our approach allows each regular agent to learn the optimal policy for all regular agents.
The capability to switch between grid-connected and islanded modes has promoted adoption of microgrid technology for powering remote locations. Stabilizing frequency during the islanding event, however, is a challenging control task, particularly under high penetration of converter-interfaced sources. In this paper, a numerical optimal control (NOC)-based control synthesis methodology is proposed for preparedness of microgrid islanding that ensure guaranteed performance. The key feature of the proposed paradigm is near real-time centralized scheduling for real-time decentralized executing. For tractable computation, linearized models are used in the problem formulation. To accommodate the linearization errors, interval analysis is employed to compute linearization-induced uncertainty as numerical intervals so that the NOC problem can be formulated into a robust mixed-integer linear program. The proposed control is verified on the full nonlinear model in Simulink. The simulation results shown effectiveness of the proposed control paradigm and the necessity of considering linearization-induced uncertainty.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا