Do you want to publish a course? Click here

On the Role of Crystal Defects on the Lattice Thermal Conductivity of Monolayer WSe2 (P63/mmc) Thermoelectric Materials by DFT Calculation

81   0   0.0 ( 0 )
 Added by Xian Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the energy problem becomes more prominent, researches on thermoelectric (TE) materials have deepened over the past few decades. Low thermal conductivity enables thermoelectric materials better thermal conversion performance. In this study, based on the first principles and phonon Boltzmann transport equation, we studied the thermal conductivities of single-layer WSe2 under several defect conditions using density functional theory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP). The lattice thermal conductivities of WSe2 under six kinds of defect states, i.e., PS, SS-c, DS-s, SW-c, SS-e, and DS-d, are 66.1, 41.2, 39.4, 8.8, 42.1, and 38.4 W/(m2K), respectively at 300 K. Defect structures can reduce thermal conductivity up to 86.7% (SW-c) compared with perfect structure. The influences of defect content, type, location factors on thermal properties have been discussed in this research. By introducing atom defects, we can reduce and regulate the thermal property of WSe2, which should provide an interesting idea for other thermoelectric materials to gain a lower thermal conductivity.



rate research

Read More

We report a configuration strategy for improving the thermoelectric (TE) performance of two-dimensional (2D) transition metal dichalcogenide (TMDC) WS2 based on the experimentally prepared WS2/WSe2 lateral superlattice (LS) crystal. On the basis of density function theory combined with Boltzmann transport equation, we show that the TE figure of merit zT of monolayer WS2 is remarkably enhanced when forming into a WS2/WSe2 LS crystal. This is primarily ascribed to the almost halved lattice thermal conductivity due to the enhanced anharmonic processes. Electronic transport properties parallel (xx) and perpendicular (yy) to the superlattice period are highly symmetric for both p- and n-doped LS owing to the nearly isotropic lifetime of charger carriers. The spin-orbital effect causes a significant split of conduction band and leads to three-fold degenerate sub-bands and high density of states (DOS), which offers opportunity to obtain the high n-type Seebeck coefficient (S). Interestingly, the separated degenerate sub-bands and upper conduction band in monolayer WS2 form a remarkable stairlike DOS, yielding a higher S. The hole carriers with much higher mobility than electrons reveal the high p-type power factor and the potential to be good p-type TE materials with optimal zT exceeds 1 at 400K in WS2/WSe2 LS.
The integration of two-dimensional transition metal dichalcogenide crystals (TMDCs) into a dielectric environment is critical for optoelectronic and photonic device applications. Here, we investigate the effects of direct deposition of different dielectric materials (Al$_2$O$_3$, SiO$_2$, SiN$_x$) onto atomically thin (monolayer) TMDC WS$_2$ on its optical response. Atomic layer deposition (ALD), electron beam evaporation (EBE), plasma enhanced chemical vapour deposition (PECVD), and magnetron sputtering methods of material deposition are investigated. The photoluminescence (PL) measurements reveal quenching of the excitonic emission after all deposition processes. The reduction in neutral exciton PL is linked to the increased level of charge doping and associated rise of the trion emission, and/or the localized (bound) exciton emission. Furthermore, Raman spectroscopy allows us to clearly correlate the observed changes of excitonic emission with the increased levels of lattice disorder and defects. Overall, the EBE process results in the lowest level of doping and defect densities and preserves the spectral weight of the exciton emission in the PL, as well as the exciton oscillator strength. Encapsulation with ALD appears to cause chemical changes, which makes it distinct from all other techniques. Sputtering is revealed as the most aggressive deposition method for WS$_2$, fully quenching its optical response. Our results demonstrate and quantify the effects of direct deposition of dielectric materials onto monolayer WS$_2$, which can provide a valuable guidance for the efforts to integrate monolayer TMDCs into functional optoelectronic devices.
Two-dimensional (2D) ZrS2 monolayer (ML) has emerged as a promising candidate for thermoelectric (TE) device applications due to its high TE figure of merit, which is mainly contributed by its inherently low lattice thermal conductivity. This work investigates the effect of the lattice anharmonicity driven by temperature-dependent phonon dispersions on thermal transport of ZrS2 ML. The calculations are based on the self-consistent phonon (SCP) theory to calculate the thermodynamic parameters along with the lattice thermal conductivity. The higher- order (quartic) force constants were extracted by using an efficient compressive sensing lattice dynamics technique, which estimates the necessary data based on the emerging machine learning program as an alternative of computationally expensive density functional theory calculations. Resolve of the degeneracy and hardening of the vibrational frequencies of low-energy optical modes were predicted upon including the quartic anharmonicity. As compared to the conventional Boltzmann transport equation (BTE) approach, the lattice thermal conductivity of the optimized ZrS2 ML unit cell within SCP + BTE approach is found to be significantly enhanced (e.g., by 21% at 300 K). This enhancement is due to the relatively lower value of phonon linewidth contributed by the anharmonic frequency renormalization included in the SCP theory. Mainly, the conventional BTE approach neglects the temperature dependence of the phonon frequencies due to the consideration of harmonic lattice dynamics and treats the normal process of three-phonon scattering incorrectly due to the use of quasi-particle lifetimes. These limitations are addressed in this work within the SCP + BTE approach, which signifies the validity and accuracy of this approach.
161 - Yuri Kornyushin 2009
A composite conductive material, which consists of fibers of a high conductivity in a matrix of low conductivity, is discussed. The effective conductivity of the system considered is calculated in Clausius-Mossotti approximation. Obtained relationships can be used to calculate the conductivity of a matrix, using experimentally measured parameters. Electric fields in the matrix and the inclusions are calculated. It is shown that the field in a low-conductivity matrix can be much higher than the external applied one.
Nanodiamond (ND) hosting nitrogen-vacancy (NV) centers is a promising platform for quantum sensing applications. Sensitivity of the applications using NV centers in NDs is often limited due to presence of paramagnetic impurity contents near the ND surface. Here, we investigate near-surface paramagnetic impurities in NDs. Using high-frequency (HF) electron paramagnetic resonance spectroscopy, the near-surface paramagnetic impurity within the shell of NDs is probed and its g-value is determined to be 2.0028(3). Furthermore, HF electron-electron double resonance-detected nuclear magnetic resonance spectroscopy and a first principle calculation show that a possible structure of the near-surface impurity is the negatively charged vacancy V-. The identification of the near-surface impurity by the present investigation provides a promising pathway to improve the NV properties in NDs and the NV-based sensing techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا