Do you want to publish a course? Click here

Influence of direct deposition of dielectric materials on the optical response of monolayer WS$_2$

116   0   0.0 ( 0 )
 Added by Elena Ostrovskaya
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The integration of two-dimensional transition metal dichalcogenide crystals (TMDCs) into a dielectric environment is critical for optoelectronic and photonic device applications. Here, we investigate the effects of direct deposition of different dielectric materials (Al$_2$O$_3$, SiO$_2$, SiN$_x$) onto atomically thin (monolayer) TMDC WS$_2$ on its optical response. Atomic layer deposition (ALD), electron beam evaporation (EBE), plasma enhanced chemical vapour deposition (PECVD), and magnetron sputtering methods of material deposition are investigated. The photoluminescence (PL) measurements reveal quenching of the excitonic emission after all deposition processes. The reduction in neutral exciton PL is linked to the increased level of charge doping and associated rise of the trion emission, and/or the localized (bound) exciton emission. Furthermore, Raman spectroscopy allows us to clearly correlate the observed changes of excitonic emission with the increased levels of lattice disorder and defects. Overall, the EBE process results in the lowest level of doping and defect densities and preserves the spectral weight of the exciton emission in the PL, as well as the exciton oscillator strength. Encapsulation with ALD appears to cause chemical changes, which makes it distinct from all other techniques. Sputtering is revealed as the most aggressive deposition method for WS$_2$, fully quenching its optical response. Our results demonstrate and quantify the effects of direct deposition of dielectric materials onto monolayer WS$_2$, which can provide a valuable guidance for the efforts to integrate monolayer TMDCs into functional optoelectronic devices.



rate research

Read More

Real-time monitoring is essential for understanding and eventually precise controlling of the growth of two dimensional transition-metal dichalcogenides (2D TMDCs). However, it is very challenging to carry out such kind of studies on chemical vapor deposition (CVD). Here, we report the first real time $in-situ$ study on the CVD growth of the 2D TMDCs. More specifically, CVD growth of molybdenum disulfide (MoS$_2$) monolayer on sapphire substrates has been monitored $in-situ$ using differential transmittance spectroscopy (DTS). The growth of the MoS$_2$ monolayer can be precisely followed by looking at the evolution of the characteristic optical features. Consequently, a strong correlation between the growth rate of MoS$_2$ monolayer and the temperature distribution in the CVD reactor has been revealed. Our result demonstrates the great potential of the real time $in-situ$ optical spectroscopy for the realization of the precisely controlled growth of 2D semiconductor materials.
285 - Luqing Wang , Alex Kutana , 2014
Monolayer transition metal dichalcogenides are promising materials for photoelectronic devices. Among them, molybdenum disulphide (MoS$_2$) and tungsten disulphide (WS$_2$) are some of the best candidates due to their favorable band gap values and band edge alignments. Here we consider various perturbative corrections to the DFT electronic structure, e.g. GW, spin-orbit coupling, as well as many-body excitonic and trionic effects, and calculate accurate band gaps as a function of homogeneous strain in these materials. We show that all of these corrections are of comparable magnitudes and need to be included in order to obtain an accurate electronic structure. We calculate the strain at which the direct-to-indirect gap transition occurs. After considering all contributions, the direct to indirect gap transition strain is found to be at 2.7% in MoS$_2$ and 3.9% in WS$_2$. These values are generally higher than the previously reported theoretical values.
Despite its interest for CMOS applications, Atomic Layer Deposition (ALD) of GeO$_{2}$ thin films, by itself or in combination with SiO$_{2}$, has not been widely investigated yet. Here we report the ALD growth of SiO$_{2}$/GeO$_{2}$ multilayers on Silicon substrates using a so far unreported Ge precursor. The characterization of multilayers with various periodicities reveals successful layer-by-layer growth with electron density contrast and absence of chemical intermixing, down to a periodicity of 2 atomic layers.
137 - M. Kopf , J. Ebad-Allah , S. Lee 2020
The layered topological insulator MnBi$_2$Te$_4$ has attracted great interest recently due to its intrinsic antiferromagnetic order, potentially hosting various topological phases. By temperature-dependent infrared spectroscopy over a broad frequency range, we studied the changes in the optical conductivity of MnBi$_2$Te$_4$ at the magnetic ordering temperature. The temperature dependence of several optical parameters reveals an anomaly at the magnetic phase transition, which suggests the correlation between the bulk electronic band structure and the magnetism. We relate our findings to recent reports on the temperature dependence of the electronic band structure of MnBi$_2$Te$_4$.
The dynamics of exciton formation in transition metal dichalcogenides is difficult to measure experimentally, since many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tuneable pump, high-harmonic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS$_2$. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast timescale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic timescale and observe the formation of a momentum-forbidden dark K$Sigma$ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا