Do you want to publish a course? Click here

Origins of minimized lattice thermal conductivity and enhanced thermoelectric performance in WS2/WSe2 lateral superlattice

141   0   0.0 ( 0 )
 Added by Guangqian Ding
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a configuration strategy for improving the thermoelectric (TE) performance of two-dimensional (2D) transition metal dichalcogenide (TMDC) WS2 based on the experimentally prepared WS2/WSe2 lateral superlattice (LS) crystal. On the basis of density function theory combined with Boltzmann transport equation, we show that the TE figure of merit zT of monolayer WS2 is remarkably enhanced when forming into a WS2/WSe2 LS crystal. This is primarily ascribed to the almost halved lattice thermal conductivity due to the enhanced anharmonic processes. Electronic transport properties parallel (xx) and perpendicular (yy) to the superlattice period are highly symmetric for both p- and n-doped LS owing to the nearly isotropic lifetime of charger carriers. The spin-orbital effect causes a significant split of conduction band and leads to three-fold degenerate sub-bands and high density of states (DOS), which offers opportunity to obtain the high n-type Seebeck coefficient (S). Interestingly, the separated degenerate sub-bands and upper conduction band in monolayer WS2 form a remarkable stairlike DOS, yielding a higher S. The hole carriers with much higher mobility than electrons reveal the high p-type power factor and the potential to be good p-type TE materials with optimal zT exceeds 1 at 400K in WS2/WSe2 LS.



rate research

Read More

Tin chalcogenides (SnS, SnSe, and SnTe) are found to have improved thermoelectric properties upon the reduction of their dimensionality. Here we found the tilted AA + s stacked two-dimensional (2D) SnTe bilayer as the most stable phase among several stackings as predicted by the structural optimization and phonon transport properties. The carrier mobility and relaxation time are evaluated using the deformation potential theory, which is found to be relatively high due to the high 2D elastic modulus, low deformation potential constant, and moderate effective masses. The SnTe bilayer shows a high Seebeck coefficient, high electrical conductivity, and ultralow lattice thermal conductivity. High TE figure of merit (ZT) values, as high as 4.61 along the zigzag direction, are predicted for the SnTe bilayer. These ZT values are much enhanced as compared to the bulk as well as monolayer SnTe and other 2D compounds.
Half-Heusler compounds usually exhibit relatively higher lattice thermal conductivity that is undesirable for thermoelectric applications. Here we demonstrate by first-principles calculations and Boltzmann transport theory that the BiBaK system is an exception, which has rather low thermal conductivity as evidenced by very small phonon group velocity and relaxation time. Detailed analysis indicates that the heavy Bi and Ba atoms form a cage-like structure, inside which the light K atom rattles with larger atomic displacement parameters. In combination with its good electronic transport properties, the BiBaK shows a maximum n-type ZT value of 1.9 at 900 K, which outperforms most half-Heusler thermoelectric materials.
The cross-plane thermal conductivity of a type II InAs/GaSb superlattice (T2SL) is measured from 13 K to 300 K using the 3{omega} method. Thermal conductivity is reduced by up to 2 orders of magnitude relative to the GaSb bulk substrate. The low thermal conductivity of around 1-8 W/mcdotK may serve as an advantage for thermoelectric applications at low temperatures, while presenting a challenge for T2SL quantum cascade lasers and high power light emitting diodes. We introduce a power-law approximation to model non-linearities in the thermal conductivity, resulting in increased or decreased peak temperature for negative or positive exponents, respectively.
80 - Yingtao Wang , Xian Zhang 2021
As the energy problem becomes more prominent, researches on thermoelectric (TE) materials have deepened over the past few decades. Low thermal conductivity enables thermoelectric materials better thermal conversion performance. In this study, based on the first principles and phonon Boltzmann transport equation, we studied the thermal conductivities of single-layer WSe2 under several defect conditions using density functional theory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP). The lattice thermal conductivities of WSe2 under six kinds of defect states, i.e., PS, SS-c, DS-s, SW-c, SS-e, and DS-d, are 66.1, 41.2, 39.4, 8.8, 42.1, and 38.4 W/(m2K), respectively at 300 K. Defect structures can reduce thermal conductivity up to 86.7% (SW-c) compared with perfect structure. The influences of defect content, type, location factors on thermal properties have been discussed in this research. By introducing atom defects, we can reduce and regulate the thermal property of WSe2, which should provide an interesting idea for other thermoelectric materials to gain a lower thermal conductivity.
Thermoelectric figures of merit, ZT > 0.5, have been obtained in arc-melted TiNiSn-based ingots. This promising conversion efficiency is due to a low lattice thermal conductivity, which is attributed to excess nickel in the half-Heusler structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا