Do you want to publish a course? Click here

The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS2 monolayer: self-consistent phonon calculations

63   0   0.0 ( 0 )
 Added by Abhiyan Pandit
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) ZrS2 monolayer (ML) has emerged as a promising candidate for thermoelectric (TE) device applications due to its high TE figure of merit, which is mainly contributed by its inherently low lattice thermal conductivity. This work investigates the effect of the lattice anharmonicity driven by temperature-dependent phonon dispersions on thermal transport of ZrS2 ML. The calculations are based on the self-consistent phonon (SCP) theory to calculate the thermodynamic parameters along with the lattice thermal conductivity. The higher- order (quartic) force constants were extracted by using an efficient compressive sensing lattice dynamics technique, which estimates the necessary data based on the emerging machine learning program as an alternative of computationally expensive density functional theory calculations. Resolve of the degeneracy and hardening of the vibrational frequencies of low-energy optical modes were predicted upon including the quartic anharmonicity. As compared to the conventional Boltzmann transport equation (BTE) approach, the lattice thermal conductivity of the optimized ZrS2 ML unit cell within SCP + BTE approach is found to be significantly enhanced (e.g., by 21% at 300 K). This enhancement is due to the relatively lower value of phonon linewidth contributed by the anharmonic frequency renormalization included in the SCP theory. Mainly, the conventional BTE approach neglects the temperature dependence of the phonon frequencies due to the consideration of harmonic lattice dynamics and treats the normal process of three-phonon scattering incorrectly due to the use of quasi-particle lifetimes. These limitations are addressed in this work within the SCP + BTE approach, which signifies the validity and accuracy of this approach.



rate research

Read More

At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depends on the approximation used for the exchange-correlation kernel in density functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the free energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe, we reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the $Gamma$X direction. In the case of SnTe, we describe the occurrence of a ferroelectric transition from the high temperature Fm$overline{3}$m structure to the low temperature R3m one.
The anharmonic lattice is a representative example of an interacting bosonic many-body system. The self-consistent harmonic approximation has proven versatile for the study of the equilibrium properties of anharmonic lattices. However, the study of dynamical properties therewithin resorts to an ansatz, whose validity has not yet been theoretically proven. Here, we apply the time-dependent variational principle, a recently emerging useful tool for studying the dynamic properties of interacting many-body systems, to the anharmonic lattice Hamiltonian at finite temperature using the Gaussian states as the variational manifold. We derive an analytic formula for the position-position correlation function and the phonon self-energy, proving the dynamical ansatz of the self-consistent harmonic approximation. We establish a fruitful connection between time-dependent variational principle and the anharmonic lattice Hamiltonian, providing insights in both fields. Our work expands the range of applicability of time-dependent variational principle to first-principles lattice Hamiltonians and lays the groundwork for the study of dynamical properties of the anharmonic lattice using a fully variational framework.
Recent studies reveal that four-phonon scattering is generally important in determining thermal conductivities of solids. However, these studies have been focused on materials where thermal conductivity $kappa$ is dominated by acoustic phonons, and the impact of four phonon scattering, although significant, is still generally smaller than three-phonon scattering. In this work, taking AlSb as example, we demonstrated that four-phonon scattering is even more critical to three-phonon scattering as it diminishes optical phonon thermal transport, and therefore significantly reduces the thermal conductivities of materials in which optical branches have long three-phonon lifetimes. Also, our calculations show that four-phonon scattering can play an extremely important role in weakening the isotope effect on $kappa$. Specifically, four-phonon scattering reduces the room-temperature $kappa$ of the isotopically pure and natural-occurring AlSb by 70$%$ and 50$%$, respectively. The reduction for isotopically pure and natural-occurring c-GaN is about 34$%$ and 27$%$, respectively. For isotopically-pure w-GaN, the reduction is about 13$%$ at room temperature and 25$%$ at 400 K. These results provided important guidance for experimentalists for achieving high thermal conductivities in III-V compounds for applications in semiconductor industry.
Allotropes of carbon, such as diamond and graphene, are among the best conductors of heat. We monitored the evolution of thermal conductivity in thin graphite as a function of temperature and thickness and found an intimate link between high conductivity, thickness, and phonon hydrodynamics. The room temperature in-plane thermal conductivity of 8.5-micrometer-thick graphite was 4300 watts per meter-kelvin-a value well above that for diamond and slightly larger than in isotopically purified graphene. Warming enhances thermal diffusivity across a wide temperature range, supporting partially hydrodynamic phonon flow. The enhancement of thermal conductivity that we observed with decreasing thickness points to a correlation between the out-of-plane momentum of phonons and the fraction of momentum relaxing collisions. We argue that this is due to the extreme phonon dispersion anisotropy in graphite.
80 - Yingtao Wang , Xian Zhang 2021
As the energy problem becomes more prominent, researches on thermoelectric (TE) materials have deepened over the past few decades. Low thermal conductivity enables thermoelectric materials better thermal conversion performance. In this study, based on the first principles and phonon Boltzmann transport equation, we studied the thermal conductivities of single-layer WSe2 under several defect conditions using density functional theory (DFT) as implemented in the Vienna Ab-initio Simulation Package (VASP). The lattice thermal conductivities of WSe2 under six kinds of defect states, i.e., PS, SS-c, DS-s, SW-c, SS-e, and DS-d, are 66.1, 41.2, 39.4, 8.8, 42.1, and 38.4 W/(m2K), respectively at 300 K. Defect structures can reduce thermal conductivity up to 86.7% (SW-c) compared with perfect structure. The influences of defect content, type, location factors on thermal properties have been discussed in this research. By introducing atom defects, we can reduce and regulate the thermal property of WSe2, which should provide an interesting idea for other thermoelectric materials to gain a lower thermal conductivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا