Do you want to publish a course? Click here

An Educational System for Personalized Teacher Recommendation in K-12 Online Classrooms

56   0   0.0 ( 0 )
 Added by Zitao Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a simple yet effective solution to build practical teacher recommender systems for online one-on-one classes. Our system consists of (1) a pseudo matching score module that provides reliable training labels; (2) a ranking model that scores every candidate teacher; (3) a novelty boosting module that gives additional opportunities to new teachers; and (4) a diversity metric that guardrails the recommended results to reduce the chance of collision. Offline experimental results show that our approach outperforms a wide range of baselines. Furthermore, we show that our approach is able to reduce the number of student-teacher matching attempts from 7.22 to 3.09 in a five-month observation on a third-party online education platform.

rate research

Read More

Asking questions is one of the most crucial pedagogical techniques used by teachers in class. It not only offers open-ended discussions between teachers and students to exchange ideas but also provokes deeper student thought and critical analysis. Providing teachers with such pedagogical feedback will remarkably help teachers improve their overall teaching quality over time in classrooms. Therefore, in this work, we build an end-to-end neural framework that automatically detects questions from teachers audio recordings. Compared with traditional methods, our approach not only avoids cumbersome feature engineering, but also adapts to the task of multi-class question detection in real education scenarios. By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions. We conducted extensive experiments on the question detection tasks in a real-world online classroom dataset and the results demonstrate the superiority of our model in terms of various evaluation metrics.
In business domains, textit{bundling} is one of the most important marketing strategies to conduct product promotions, which is commonly used in online e-commerce and offline retailers. Existing recommender systems mostly focus on recommending individual items that users may be interested in. In this paper, we target at a practical but less explored recommendation problem named bundle recommendation, which aims to offer a combination of items to users. To tackle this specific recommendation problem in the context of the emph{virtual mall} in online games, we formalize it as a link prediction problem on a user-item-bundle tripartite graph constructed from the historical interactions, and solve it with a neural network model that can learn directly on the graph-structure data. Extensive experiments on three public datasets and one industrial game dataset demonstrate the effectiveness of the proposed method. Further, the bundle recommendation model has been deployed in production for more than one year in a popular online game developed by Netease Games, and the launch of the model yields more than 60% improvement on conversion rate of bundles, and a relative improvement of more than 15% on gross merchandise volume (GMV).
129 - Yan Gao , Jiafeng Guo , Yanyan Lan 2020
In this paper, we investigate the recommendation task in the most common scenario with implicit feedback (e.g., clicks, purchases). State-of-the-art methods in this direction usually cast the problem as to learn a personalized ranking on a set of items (e.g., webpages, products). The top-N results are then provided to users as recommendations, where the N is usually a fixed number pre-defined by the system according to some heuristic criteria (e.g., page size, screen size). There is one major assumption underlying this fixed-number recommendation scheme, i.e., there are always sufficient relevant items to users preferences. Unfortunately, this assumption may not always hold in real-world scenarios. In some applications, there might be very limited candidate items to recommend, and some users may have very high relevance requirement in recommendation. In this way, even the top-1 ranked item may not be relevant to a users preference. Therefore, we argue that it is critical to provide a dynamic-K recommendation, where the K should be different with respect to the candidate item set and the target user. We formulate this dynamic-K recommendation task as a joint learning problem with both ranking and classification objectives. The ranking objective is the same as existing methods, i.e., to create a ranking list of items according to users interests. The classification objective is unique in this work, which aims to learn a personalized decision boundary to differentiate the relevant items from irrelevant items. Based on these ideas, we extend two state-of-the-art ranking-based recommendation methods, i.e., BPRMF and HRM, to the corresponding dynamic
Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works do not satisfy this origin-awareness property, and only consider learning from historical destination locations, without origin information. Thus, the resulting approaches are unable to learn and predict origin-aware recommendations based on the users current location, leading to sub-optimal performance and poor real-world practicality. Hence, in this work, we study the origin-aware next destination recommendation task. We propose the Spatial-Temporal Origin-Destination Personalized Preference Attention (STOD-PPA) encoder-decoder model to learn origin-origin (OO), destination-destination (DD), and origin-destination (OD) relationships by first encoding both origin and destination sequences with spatial and temporal factors in local and global views, then decoding them through personalized preference attention to predict the next destination. Experimental results on seven real-world user trajectory taxi datasets show that our model significantly outperforms baseline and state-of-the-art methods.
Multiplayer Online Battle Arena (MOBA) games have received increasing popularity recently. In a match of such games, players compete in two teams of five, each controlling an in-game avatars, known as heroes, selected from a roster of more than 100. The selection of heroes, also known as pick or draft, takes place before the match starts and alternates between the two teams until each player has selected one hero. Heroes are designed with different strengths and weaknesses to promote team cooperation in a game. Intuitively, heroes in a strong team should complement each others strengths and suppressing those of opponents. Hero drafting is therefore a challenging problem due to the complex hero-to-hero relationships to consider. In this paper, we propose a novel hero recommendation system that suggests heroes to add to an existing team while maximizing the teams prospect for victory. To that end, we model the drafting between two teams as a combinatorial game and use Monte Carlo Tree Search (MCTS) for estimating the values of hero combinations. Our empirical evaluation shows that hero teams drafted by our recommendation algorithm have significantly higher win rate against teams constructed by other baseline and state-of-the-art strategies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا