No Arabic abstract
Multiplayer Online Battle Arena (MOBA) games have received increasing popularity recently. In a match of such games, players compete in two teams of five, each controlling an in-game avatars, known as heroes, selected from a roster of more than 100. The selection of heroes, also known as pick or draft, takes place before the match starts and alternates between the two teams until each player has selected one hero. Heroes are designed with different strengths and weaknesses to promote team cooperation in a game. Intuitively, heroes in a strong team should complement each others strengths and suppressing those of opponents. Hero drafting is therefore a challenging problem due to the complex hero-to-hero relationships to consider. In this paper, we propose a novel hero recommendation system that suggests heroes to add to an existing team while maximizing the teams prospect for victory. To that end, we model the drafting between two teams as a combinatorial game and use Monte Carlo Tree Search (MCTS) for estimating the values of hero combinations. Our empirical evaluation shows that hero teams drafted by our recommendation algorithm have significantly higher win rate against teams constructed by other baseline and state-of-the-art strategies.
Multiplayer Online Battle Arena (MOBA) games have received increasing worldwide popularity recently. In such games, players compete in teams against each other by controlling selected game avatars, each of which is designed with different strengths and weaknesses. Intuitively, putting together game avatars that complement each other (synergy) and suppress those of opponents (opposition) would result in a stronger team. In-depth understanding of synergy and opposition relationships among game avatars benefits player in making decisions in game avatar drafting and gaining better prediction of match events. However, due to intricate design and complex interactions between game avatars, thorough understanding of their relationships is not a trivial task. In this paper, we propose a latent variable model, namely Game Avatar Embedding (GAE), to learn avatars numerical representations which encode synergy and opposition relationships between pairs of avatars. The merits of our model are twofold: (1) the captured synergy and opposition relationships are sensible to experienced human players perception; (2) the learned numerical representations of game avatars allow many important downstream tasks, such as similar avatar search, match outcome prediction, and avatar pick recommender. To our best knowledge, no previous model is able to simultaneously support both features. Our quantitative and qualitative evaluations on real match data from three commercial MOBA games illustrate the benefits of our model.
Successful analysis of player skills in video games has important impacts on the process of enhancing player experience without undermining their continuous skill development. Moreover, player skill analysis becomes more intriguing in team-based video games because such form of study can help discover useful factors in effective team formation. In this paper, we consider the problem of skill decomposition in MOBA (MultiPlayer Online Battle Arena) games, with the goal to understand what player skill factors are essential for the outcome of a game match. To understand the construct of MOBA player skills, we utilize various skill-based predictive models to decompose player skills into interpretative parts, the impact of which are assessed in statistical terms. We apply this analysis approach on two widely known MOBAs, namely League of Legends (LoL) and Defense of the Ancients 2 (DOTA2). The finding is that base skills of in-game avatars, base skills of players, and players champion-specific skills are three prominent skill components influencing LoLs match outcomes, while those of DOTA2 are mainly impacted by in-game avatars base skills but not much by the other two.
Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused on using well-known games to build strong agents. This progress, however, can be better informed by characterizing games and their topological landscape. Tackling this latter question can facilitate understanding of agents and help determine what game an agent should target next as part of its training. Here, we show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games, quantifying relationships between games of varying sizes and characteristics. We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another. Our results culminate in a demonstration leveraging this information to generate new and interesting games, including mixtures of empirical games synthesized from real world games.
Deck building is a crucial component in playing Collectible Card Games (CCGs). The goal of deck building is to choose a fixed-sized subset of cards from a large card pool, so that they work well together in-game against specific opponents. Existing methods either lack flexibility to adapt to different opponents or require large computational resources, still making them unsuitable for any real-time or large-scale application. We propose a new deck recommendation system, named Q-DeckRec, which learns a deck search policy during a training phase and uses it to solve deck building problem instances. Our experimental results demonstrate Q-DeckRec requires less computational resources to build winning-effective decks after a training phase compared to several baseline methods.
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define three different scenarios according to the communication capabilities of the team. In the first, the teammates can communicate and correlate their actions both before and during the play. In the second, they can only communicate before the play. In the third, no communication is possible at all. We define the most suitable solution concepts, and we study the inefficiency caused by partial or null communication, showing that the inefficiency can be arbitrarily large in the size of the game tree. Furthermore, we study the computational complexity of the equilibrium-finding problem in the three scenarios mentioned above, and we provide, for each of the three scenarios, an exact algorithm. Finally, we empirically evaluate the scalability of the algorithms in random games and the inefficiency caused by partial or null communication.