Do you want to publish a course? Click here

Origin-Aware Next Destination Recommendation with Personalized Preference Attention

372   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works do not satisfy this origin-awareness property, and only consider learning from historical destination locations, without origin information. Thus, the resulting approaches are unable to learn and predict origin-aware recommendations based on the users current location, leading to sub-optimal performance and poor real-world practicality. Hence, in this work, we study the origin-aware next destination recommendation task. We propose the Spatial-Temporal Origin-Destination Personalized Preference Attention (STOD-PPA) encoder-decoder model to learn origin-origin (OO), destination-destination (DD), and origin-destination (OD) relationships by first encoding both origin and destination sequences with spatial and temporal factors in local and global views, then decoding them through personalized preference attention to predict the next destination. Experimental results on seven real-world user trajectory taxi datasets show that our model significantly outperforms baseline and state-of-the-art methods.



rate research

Read More

Existing review-based recommendation methods usually use the same model to learn the representations of all users/items from reviews posted by users towards items. However, different users have different preference and different items have different characteristics. Thus, the same word or similar reviews may have different informativeness for different users and items. In this paper we propose a neural recommendation approach with personalized attention to learn personalized representations of users and items from reviews. We use a review encoder to learn representations of reviews from words, and a user/item encoder to learn representations of users or items from reviews. We propose a personalized attention model, and apply it to both review and user/item encoders to select different important words and reviews for different users/items. Experiments on five datasets validate our approach can effectively improve the performance of neural recommendation.
Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with augmentation of a probabilistic model. The original self-attention of Transformer is a deterministic measure without relation-awareness. Therefore, we introduce a latent space to the self-attention, and the latent space models the recommendation context from relation as a multivariate skew-normal distribution with a kernelized covariance matrix from co-occurrences, item characteristics, and user information. This work merges the self-attention of the Transformer and the sequential recommendation by adding a probabilistic model of the recommendation task specifics. We experimented RKSA over the benchmark datasets, and RKSA shows significant improvements compared to the recent baseline models. Also, RKSA were able to produce a latent space model that answers the reasons for recommendation.
398 - Mengqi Zhang , Shu Wu , Meng Gao 2019
The problem of session-aware recommendation aims to predict users next click based on their current session and historical sessions. Existing session-aware recommendation methods have defects in capturing complex item transition relationships. Other than that, most of them fail to explicitly distinguish the effects of different historical sessions on the current session. To this end, we propose a novel method, named Personalized Graph Neural Networks with Attention Mechanism (A-PGNN) for brevity. A-PGNN mainly consists of two components: one is Personalized Graph Neural Network (PGNN), which is used to extract the personalized structural information in each user behavior graph, compared with the traditional Graph Neural Network (GNN) model, which considers the role of the user when the node embeddding is updated. The other is Dot-Product Attention mechanism, which draws on the Transformer net to explicitly model the effect of historical sessions on the current session. Extensive experiments conducted on two real-world data sets show that A-PGNN evidently outperforms the state-of-the-art personalized session-aware recommendation methods.
A user can be represented as what he/she does along the history. A common way to deal with the user modeling problem is to manually extract all kinds of aggregated features over the heterogeneous behaviors, which may fail to fully represent the data itself due to limited human instinct. Recent works usually use RNN-based methods to give an overall embedding of a behavior sequence, which then could be exploited by the downstream applications. However, this can only preserve very limited information, or aggregated memories of a person. When a downstream application requires to facilitate the modeled user features, it may lose the integrity of the specific highly correlated behavior of the user, and introduce noises derived from unrelated behaviors. This paper proposes an attention based user behavior modeling framework called ATRank, which we mainly use for recommendation tasks. Heterogeneous user behaviors are considered in our model that we project all types of behaviors into multiple latent semantic spaces, where influence can be made among the behaviors via self-attention. Downstream applications then can use the user behavior vectors via vanilla attention. Experiments show that ATRank can achieve better performance and faster training process. We further explore ATRank to use one unified model to predict different types of user behaviors at the same time, showing a comparable performance with the highly optimized individual models.
This paper proposes Medley of Sub-Attention Networks (MoSAN), a new novel neural architecture for the group recommendation task. Group-level recommendation is known to be a challenging task, in which intricate group dynamics have to be considered. As such, this is to be contrasted with the standard recommendation problem where recommendations are personalized with respect to a single user. Our proposed approach hinges upon the key intuition that the decision making process (in groups) is generally dynamic, i.e., a users decision is highly dependent on the other group members. All in all, our key motivation manifests in a form of an attentive neural model that captures fine-grained interactions between group members. In our MoSAN model, each sub-attention module is representative of a single member, which models a users preference with respect to all other group members. Subsequently, a Medley of Sub-Attention modules is then used to collectively make the groups final decision. Overall, our proposed model is both expressive and effective. Via a series of extensive experiments, we show that MoSAN not only achieves state-of-the-art performance but also improves standard baselines by a considerable margin.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا