Do you want to publish a course? Click here

Motion of test particle in rotating boson star

321   0   0.0 ( 0 )
 Added by Yu-Xiao Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motion of a test particle plays an important role in understanding the properties of a spacetime. As a new type of the strong gravity system, boson stars could mimic black holes located at the center of galaxies. Studying the motion of a test particle in the spacetime of a rotating boson star will provide the astrophysical observable effects if a boson star is located at the center of a galaxy. In this paper, we investigate the timelike geodesic of a test particle in the background of a rotating boson star with angular number $m=(1, 2, 3)$. With the change of angular number and frequency, a rotating boson star will transform from the low rotating state to the highly relativistic rapidly rotating state, the corresponding Lense-Thirring effects will be more and more significant and it should be studied in detail. By solving the four-velocity of a test particle and integrating the geodesics, we investigate the bound orbits with a zero and nonzero angular momentum. We find that a test particle can stay more longer time in the central region of a boson star when the boson star becomes from low rotating state to highly relativistic rotating state. Such behaviors of the orbits are quite different from the orbits in a Kerr black hole, and the observable effects from these orbits will provide a rule to investigate the astrophysical compact objects in the Galactic center.



rate research

Read More

The motion of spinning test particles around a traversable wormhole is investigated using the Mathisson Papapetrous Dixon equations, which couple the Riemann tensor with the antisymmetric tensor $S^{ab}$, related to the spin of the particle. Hence, we study the effective potential, circular orbits, and innermost stable circular orbit ISCO of spinning particles. We found that the spin affects significantly the location of the ISCO, in contrast with the motion of nonspinning particles, where the ISCO is the same in both the upper and lower universes. On the other hand, since the dynamical fourmomentum and kinematical fourvelocity of the spinning particle are not always parallel, we also consider a superluminal bound on the particles motion. In the case of circular orbits at the ISCO, we found that the motion of particles with an adimensional spin parameter lower greater than $s=-1.5$ $(1.5)$ is forbidden. The spin interaction becomes important for Kerr black hole orbiting super massive wormholes SMWH.
We study the geodesic motion of test particles in the space-time of non-compact boson stars. These objects are made of a self-interacting scalar field and -- depending on the scalar fields mass -- can be as dense as neutron stars or even black holes. In contrast to the former these objects do not contain a well-defined surface, while in contrast to the latter the space-time of boson stars is globally regular, can -- however -- only be given numerically. Hence, the geodesic equation also has to be studied numerically. We discuss the possible orbits for massive and massless test particles and classify them according to the particles energy and angular momentum. The space-time of a boson star approaches the Schwarzschild space-time asymptotically, however deviates strongly from it close to the center of the star. As a consequence, we find additional bound orbits of massive test particles close to the center of the star that are not present in the Schwarzschild case. Our results can be used to make predictions about extreme-mass-ratio inspirals (EMRIs) and we hence compare our results to recent observational data of the stars orbiting Sagittarius A* - the radiosource at the center of our own galaxy.
In this paper, we construct rotating boson stars composed of the coexisting states of two scalar fields, including the ground and first excited states. We show the coexisting phase with both the ground and first excited states for rotating multistate boson stars. In contrast to the solutions of the nodeless boson stars, the rotating boson stars with two states have two types of nodes, including the $^1S^2S$ state and the $^1S^2P$ state. Moreover, we explore the properties of the mass $M$ of rotating boson stars with two states as a function of the synchronized frequency $omega$, as well as the nonsynchronized frequency $omega_2$. Finally, we also study the dependence of the mass $M$ of rotating boson stars with two states on angular momentum for both the synchronized frequency $omega$ and the nonsynchronized frequency $omega_2$.
In this paper we suggest an approach to analyse the motion of a test particle in the spacetime of a global monopole within a $f(R)$-like modified gravity. The field equations are written in a more simplified form in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a spherically symmetric problem, $F(R)$ is expressed as a radial function ${cal F}(r)equiv{F(R(r))}$. So, the choice of a specific form for $f(R)$ will be equivalent to adopt an Ansatz for ${cal F}(r)$. By choosing an explicit functional form for ${cal F}(r)$ we obtain the weak field solutions for the metric tensor, compute the time-like geodesics and analyse the motion of a massive test particle. An interesting feature is an emerging attractive force exerted by the monopole on the particle.
We used a continuously rotating torsion balance instrument to measure the acceleration difference of beryllium and titanium test bodies towards sources at a variety of distances. Our result Delta a=(0.6+/-3.1)x10^-15 m/s^2 improves limits on equivalence-principle violations with ranges from 1 m to infinity by an order of magnitude. The Eoetvoes parameter is eta=(0.3+/-1.8)x10^-13. By analyzing our data for accelerations towards the center of the Milky Way we find equal attractions of Be and Ti towards galactic dark matter, yielding eta=(-4 +/- 7)x10^-5. Space-fixed differential accelerations in any direction are limited to less than 8.8x10^-15 m/s^2 with 95% confidence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا