No Arabic abstract
In this paper we suggest an approach to analyse the motion of a test particle in the spacetime of a global monopole within a $f(R)$-like modified gravity. The field equations are written in a more simplified form in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a spherically symmetric problem, $F(R)$ is expressed as a radial function ${cal F}(r)equiv{F(R(r))}$. So, the choice of a specific form for $f(R)$ will be equivalent to adopt an Ansatz for ${cal F}(r)$. By choosing an explicit functional form for ${cal F}(r)$ we obtain the weak field solutions for the metric tensor, compute the time-like geodesics and analyse the motion of a massive test particle. An interesting feature is an emerging attractive force exerted by the monopole on the particle.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a spherically symmetric system, we assume that $F(R)$ is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.
The motion of spinning test particles around a traversable wormhole is investigated using the Mathisson Papapetrous Dixon equations, which couple the Riemann tensor with the antisymmetric tensor $S^{ab}$, related to the spin of the particle. Hence, we study the effective potential, circular orbits, and innermost stable circular orbit ISCO of spinning particles. We found that the spin affects significantly the location of the ISCO, in contrast with the motion of nonspinning particles, where the ISCO is the same in both the upper and lower universes. On the other hand, since the dynamical fourmomentum and kinematical fourvelocity of the spinning particle are not always parallel, we also consider a superluminal bound on the particles motion. In the case of circular orbits at the ISCO, we found that the motion of particles with an adimensional spin parameter lower greater than $s=-1.5$ $(1.5)$ is forbidden. The spin interaction becomes important for Kerr black hole orbiting super massive wormholes SMWH.
We investigate a braneworld model generated by a global monopole in the context of Brans-Dicke gravity. After solving the dynamical equations we found a model capable to alleviate the so-called hierarchy problem. The obtained framework is described by a hybrid compactification scheme endowed with a seven-dimensional spacetime, in which the brane has four non-compact dimensions and two curled extra dimensions. The relevant aspects of the resulting model are studied and the requirements to avoid the well known seesaw-like behavior are discussed. We show that under certain conditions it is possible to circumvent such a pathological behavior that characterizes most of the models that exhibit hybrid compactification. Lastly, we deepen our analysis by considering possible extensions of this model to a setup with multiple branes and orbifold-like extra dimension. For this, we compute the consistency conditions to be obeyed by this more general configuration as predicted by the braneworld sum rules formalism. This study indicates the possibility of exclusively positive brane tensions in the model.
We study holographic superconductors in the Schwarzschild-AdS black hole with a global monopole through a charged complex scalar field. We calculate the condensates of the charged operators in the dual conformal field theories (CFTs) and discuss the effects of the global monopole on the condensation formation. Moreover, we compute the electric conductive using the probe approximation and find that the properties of the conductive are quite similar to those in the Schwarzschild-AdS black hole. These results can help us know more about holographic superconductors in the asymptotic AdS black holes.
In the context of the recently proposed type-II minimally modified gravity theory, i.e. a metric theory of gravity with two local physical degrees of freedom that does not possess an Einstein frame, we study spherically symmetric vacuum solutions to explore the strong gravity regime. Despite the absence of extra degrees of freedom in the gravity sector, the vacuum solutions are locally different from the Schwarzschild or Schwarzschild-(A)dS metric in general and thus the Birkhoff theorem does not hold. The general solutions are parameterized by several free functions of time and admit regular trapping and event horizons. Depending on the choice of the free functions of time, the null convergence condition may be violated in vacuum. Even in the static limit, while the solutions in this limit reduce to the Schwarzschild or Schwarzschild-(A)dS solutions, the effective cosmological constant deduced from the solutions is in general different from the cosmological value that is determined by the action. Nonetheless, once a set of suitable asymptotic conditions is imposed so that the solutions represent compact objects in the corresponding cosmological setup, the standard Schwarzschild or Schwarzschild-(A)dS metric is recovered and the effective cosmological constant agrees with the value inferred from the action.