No Arabic abstract
We study the geodesic motion of test particles in the space-time of non-compact boson stars. These objects are made of a self-interacting scalar field and -- depending on the scalar fields mass -- can be as dense as neutron stars or even black holes. In contrast to the former these objects do not contain a well-defined surface, while in contrast to the latter the space-time of boson stars is globally regular, can -- however -- only be given numerically. Hence, the geodesic equation also has to be studied numerically. We discuss the possible orbits for massive and massless test particles and classify them according to the particles energy and angular momentum. The space-time of a boson star approaches the Schwarzschild space-time asymptotically, however deviates strongly from it close to the center of the star. As a consequence, we find additional bound orbits of massive test particles close to the center of the star that are not present in the Schwarzschild case. Our results can be used to make predictions about extreme-mass-ratio inspirals (EMRIs) and we hence compare our results to recent observational data of the stars orbiting Sagittarius A* - the radiosource at the center of our own galaxy.
Recent works showing that homogeneous and isotropic cosmologies involving scalar fields correspond to geodesics of certain augmented spaces are generalized to the non-minimal coupling case. As the Maupertuis-Jacobi principle in classical mechanics, this result allows us, in principle, to infer some of the dynamical properties of the cosmologies from the geometry of the associated augmented spaces.
Considering the finite IR behavior of quantum chromodynamics (QCD) running coupling constant in some experiments, we intend to investigate different models presenting running coupling with finite values in the IR region. Using analytic and background perturbation theories, we obtain some equation of states (EoSs) of strange quark matter which satisfy necessary conditions of suitable EoSs. Then we evaluate the properties of strange quark stars in general relativity. Our results for maximum gravitational mass is comparable with the recent LIGO data for the compact binary merger, GW190425.
We present compact Q-balls in an (Anti-)de Sitter background in D dimensions, obtained with a V-shaped potential of the scalar field. Beyond critical values of the cosmological constant compact Q-shells arise. By including the gravitational back-reaction, we obtain boson stars and boson shells with (Anti-)de Sitter asymptotics. We analyze the physical properties of these solutions and determine their domain of existence. In four dimensions we address some astrophysical aspects.
We describe the evolution of slowly spinning compact objects in the late inspiral with Newtonian corrections due to spin, tides, dissipation and post-Newtonian corrections to the point mass term in the action within the effective field theory framework. We evolve the system numerically using a simple algorithm for point particle simulations and extract the lowest-order Newtonian gravitational waveform to study its phase evolution due to the different effects. We show that the matching of coefficients of the effective field theory for compact objects from systems that the gravitational wave observatories LIGO-Virgo currently detects might be possible and it can place tight constraints on fundamental physics.
Motion of a test particle plays an important role in understanding the properties of a spacetime. As a new type of the strong gravity system, boson stars could mimic black holes located at the center of galaxies. Studying the motion of a test particle in the spacetime of a rotating boson star will provide the astrophysical observable effects if a boson star is located at the center of a galaxy. In this paper, we investigate the timelike geodesic of a test particle in the background of a rotating boson star with angular number $m=(1, 2, 3)$. With the change of angular number and frequency, a rotating boson star will transform from the low rotating state to the highly relativistic rapidly rotating state, the corresponding Lense-Thirring effects will be more and more significant and it should be studied in detail. By solving the four-velocity of a test particle and integrating the geodesics, we investigate the bound orbits with a zero and nonzero angular momentum. We find that a test particle can stay more longer time in the central region of a boson star when the boson star becomes from low rotating state to highly relativistic rotating state. Such behaviors of the orbits are quite different from the orbits in a Kerr black hole, and the observable effects from these orbits will provide a rule to investigate the astrophysical compact objects in the Galactic center.