Do you want to publish a course? Click here

Beyond Low-pass Filtering: Graph Convolutional Networks with Automatic Filtering

90   0   0.0 ( 0 )
 Added by Shirui Pan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph convolutional networks are becoming indispensable for deep learning from graph-structured data. Most of the existing graph convolutional networks share two big shortcomings. First, they are essentially low-pass filters, thus the potentially useful middle and high frequency band of graph signals are ignored. Second, the bandwidth of existing graph convolutional filters is fixed. Parameters of a graph convolutional filter only transform the graph inputs without changing the curvature of a graph convolutional filter function. In reality, we are uncertain about whether we should retain or cut off the frequency at a certain point unless we have expert domain knowledge. In this paper, we propose Automatic Graph Convolutional Networks (AutoGCN) to capture the full spectrum of graph signals and automatically update the bandwidth of graph convolutional filters. While it is based on graph spectral theory, our AutoGCN is also localized in space and has a spatial form. Experimental results show that AutoGCN achieves significant improvement over baseline methods which only work as low-pass filters.



rate research

Read More

Graph convolutional networks have achieved great success on graph-structured data. Many graph convolutional networks can be regarded as low-pass filters for graph signals. In this paper, we propose a new model, BiGCN, which represents a graph neural network as a bi-directional low-pass filter. Specifically, we not only consider the original graph structure information but also the latent correlation between features, thus BiGCN can filter the signals along with both the original graph and a latent feature-connection graph. Our model outperforms previous graph neural networks in the tasks of node classification and link prediction on most of the benchmark datasets, especially when we add noise to the node features.
The interactions of users and items in recommender system could be naturally modeled as a user-item bipartite graph. In recent years, we have witnessed an emerging research effort in exploring user-item graph for collaborative filtering methods. Nevertheless, the formation of user-item interactions typically arises from highly complex latent purchasing motivations, such as high cost performance or eye-catching appearance, which are indistinguishably represented by the edges. The existing approaches still remain the differences between various purchasing motivations unexplored, rendering the inability to capture fine-grained user preference. Therefore, in this paper we propose a novel Multi-Component graph convolutional Collaborative Filtering (MCCF) approach to distinguish the latent purchasing motivations underneath the observed explicit user-item interactions. Specifically, there are two elaborately designed modules, decomposer and combiner, inside MCCF. The former first decomposes the edges in user-item graph to identify the latent components that may cause the purchasing relationship; the latter then recombines these latent components automatically to obtain unified embeddings for prediction. Furthermore, the sparse regularizer and weighted random sample strategy are utilized to alleviate the overfitting problem and accelerate the optimization. Empirical results on three real datasets and a synthetic dataset not only show the significant performance gains of MCCF, but also well demonstrate the necessity of considering multiple components.
The core operation of current Graph Neural Networks (GNNs) is the aggregation enabled by the graph Laplacian or message passing, which filters the neighborhood node information. Though effective for various tasks, in this paper, we show that they are potentially a problematic factor underlying all GNN methods for learning on certain datasets, as they force the node representations similar, making the nodes gradually lose their identity and become indistinguishable. Hence, we augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity. Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations. In practice, the proposed two-channel filters can be easily patched on existing GNN methods with diverse training strategies, including spectral and spatial (message passing) methods. In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
In this paper we provide stability results for algebraic neural networks (AlgNNs) based on non commutative algebras. AlgNNs are stacked layered structures with each layer associated to an algebraic signal model (ASM) determined by an algebra, a vector space, and a homomorphism. Signals are modeled as elements of the vector space, filters are elements in the algebra, while the homomorphism provides a realization of the filters as concrete operators. We study the stability of the algebraic filters in non commutative algebras to perturbations on the homomorphisms, and we provide conditions under which stability is guaranteed. We show that the commutativity between shift operators and between shifts and perturbations does not affect the property of an architecture of being stable. This provides an answer to the question of whether shift invariance was a necessary attribute of convolutional architectures to guarantee stability. Additionally, we show that although the frequency responses of filters in non commutative algebras exhibit substantial differences with respect to filters in commutative algebras, their derivatives for stable filters have a similar behavior.
235 - Deyu Bo , Xiao Wang , Chuan Shi 2021
Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا